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The article contains the results of identification of manipulator 
arm dynamics that is driven by pneumatic artificial muscles 
(specifically, fluidic muscles). The NARX architecture model - a 
multilayer perceptron network (MLP model) was selected for 
identification. Simulations were realized using MATLAB, 
especially with use the System Identification Toolbox. The 
simulation results were tracked at 3 different delays for the 
upper and lower axis of the manipulator separately. The NRMSE 
criterion (Normal Root Mean Square Error) serves to compare 
simulation results by comparing output of simulations and 
measured output data. 
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1 INTRODUCTION 

The system represents complex and mutual interconnection of 
elements that have different parameters and characteristics. By 
analysing these relationships and characteristics, it is possible to 
achieve a higher degree of system optimization, respectively its 
management [Tangirala 2015]. This serves to identification of 
the system where the model is the basic tool. The model must 
represent the system in the most appropriate way. As the data 
presented in the article are measured from the real manipulator, 
the empirical approach for was chosen identification from two 
ways of identification. [Balátě 2003], in his literature, presents 
the advantage of an empirical approach to identification in 
experimental possibilities, such as: 

• artificial introduction of operating conditions; 

• artificial introduction of emergency state; 

• examining system behaviour in model mode (system is not   
compromised). 

The identification that is described in this article concerns the 
robotic arm with two degrees of freedom. The authors of the 
article deal with unconventional drives (if compared to electric 
or hydraulic drives) that could be applied in the industry, so they 
have chosen for this device fluid muscles as drive. The 
researched system, like most systems applied in practice, is 
nonlinear and dynamic, making it more difficult to identify. The 
presence of friction, hysteresis, non-linearity of properties is 
some of the disadvantages [FESTO 2017], that influence the 
process of identification and management. 

Despite the disadvantages of these drives, the pneumatic 
artificial muscles have several advantages (high flexibility, tensile 
strength, but also safety) that stimulate researchers to explore 
this area of drives. The results of the studies that were about the 

static and dynamic properties of artificial muscles, their models, 
and the application of models in kinematic systems are 
described in literature [Hošovský 2016, Sárosi 2015, Zhao 2015, 
Piteľ 2014, Wickramatunge 2009, Hildebrandt 2005]. Articles 
that are similar to this research and article (identification of 
systems powered by pneumatic artificial muscles) are also 
analysed in [Anh 2006, 2008, 2010]. 

Fig. 1 shows the structure of the simulation model, the research 
of which is described in this article. Its input was measured 
voltage U and its output was differential pressure Δp. Since the 
model contains one input and one output, it is a SISO system. In 
the experimental manipulator, the upper axis represented one 
SISO system and the lower axis the second SISO system.  

However, if we want to look at the manipulator as a whole and 
we take into account that the pressure differential affects the 
simulation results also, it is necessary to perform simulations on 
the MISO model. The structure of this model is shown in Fig.2 
and will consist of one SISO system and one MISO system. This 
means that from the simulated SISO models presented in this 
article will select the best models whose structure will be used 
in future research - MISO simulations. 

 

 

Figure 1: Structure of the simulation model SISO 

 

 

Figure 2: Structure of the next simulation model MISO 

 

The description of the experimental manipulator, the nonlinear 
model chosen for identification (MLP model), the data obtained, 
as well as the results of the simulations themselves (from SISO 
systems), are described in the following sections. 

2 2-DOF PLANAR ROBOTIC ARM 

Fig. 3 shows a 2-DOF robotic arm that was the object of the 
study. The drive of robotic system is made with two pairs of fluid 
muscles from the FESTO manufacturer (diameter 20mm, length 
250mm) type MAS - i.e., ends for screwing. The working medium 
of the muscles is compressed air, which is produced and supplied 
by the FIAC LEONARDO compressor. When filled with 
pressurized air, each of the muscle contracts and develop a 
tensile force. As the manipulator has two joints, gears and 
chains, the tensile force is transmitted as a torque. In the end, 
this is reflected by the displacement of the load placed at the 
end of one of the arms (rotational motion). Therefore, the 
resulting monitored parameter is the angle of rotation of the 
joint (Kubler 3610 incremental encoder). The entire arm is 
attached to the upper base of the metal structure. The electronic 
pressure regulators Matrix EPR50, incorporating pressure 
sensors also, are used to detect pressure in the muscles. Each 
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muscle has its own pressure regulator. MATLAB/Simulink 
software was used for data acquisition and identification 
[Trojanová 2018]. 

 

Figure 3: 2-DOF robot arm driven by fluidic muscles 

 

The choice of FESTO's fluidic muscles implemented in the 
manipulator was for the benefits it brings. In particular, the 
elimination of dry friction between the outer and inner layers of 
the muscle (since both layers are combined in one for FESTO 
muscles), the possibility of application to adverse working 
conditions, high tensile strength and others [FESTO 2017]. 

3 MULTILAYER PERCEPTRON NETWORK 

Since the system - manipulator with PAMs appeared to be 
nonlinear, it was chosen to identify the model of the multilayer 
perceptron network (MLP model) – it is shown in Fig. 4 [Nelles 
2001, Trojanová 2019]. This model is one of the most well-known 
and most widely used type of non-linear architecture in the 
artificial neural network. It is created by linking perceptrons 
(name for MLP neuron) placed on the hidden layer (one or 
more), that are connected to the neuron located on the output 
layer. The task of the perceptrons is to process the inputs uj, 
which have their weight wij and are located on the input layer, to 
the output y with the weight wj located on the output layer (Eq. 
(1)) [Nelles 2001, Karray 2004]. 

 

𝑦 =∑𝑤𝑖𝜑𝑖 (∑𝑤𝑖𝑗𝑢𝑗

𝑝

𝑗=0

)

𝑀

𝑖=0

 (1) 

 

The processing is made using the i activation function (the most 
common logistic function (Eq. (2) and the hyperbolic tangent (Eq. 
(3)). While the hidden layer´s parameters are nonlinear, the 
network output itself is already linear. 

 

Figure 4: Scheme structure of the Multilayer Perceptron Network 

4 INPUT AND OUTPUT MEASURED DATA 

The input and output data needed for identification were 
obtained by measurements. Separately were measured data for 
upper and lower axis (two separate SISO systems), where was 
observed Voltage (U) at the input, and at the output were 
monitored the differences of pressures (Δp) and the angle of 
rotation (ϕ). For the training simulation phase were obtained 
total 28,000 samples, for testing 10,000 samples - in both sets 
with a sampling period of 3ms. To generate the training data 
APRBS signal in the range of -8 to 8 V was used (Fig. 5, blue curve, 
Fig. 6, green curve). The test data was generated by trapezoidal 
excitation signals in the range of -6 to 6V (Fig. 5 red curve, Fig. 6, 
orange curve). 

 

Figure 5: Time dependence of input voltage – upper axis 

 

Figure 6: Time dependence of input voltage – lower axis 

𝜑𝑖 = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑥) =
1

1 + 𝑒𝑥𝑝(−𝑥)
 (2) 

 

𝜑𝑖 = 𝑡𝑎𝑢ℎ(𝑥) =
1 − 𝑒𝑥𝑝(−2𝑥)

1 + 𝑒𝑥𝑝(−2𝑥)
 

 

(3) 
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The difference of pressures in the muscles (as one of the 
monitored outputs) was sensed by the pressure sensors, and the 
measurement results can be seen in Fig. 7 and Fig. 8. The range 
of difference pressure (depending to the axis) was changing for 
training from -580 kPa to 600 kPa; for testing in range from -315 
kPa to 450 kPa. 

 

Figure 7: Time dependence of output difference of pressures – upper 
axis 

 

Figure 8: Time dependence of output difference of pressures – lower axis 

The most important variable - the angle of rotation - was 
measured by an incremental sensor. The output data measured 
for the upper and lower axes as well as for the training and 
testing phases are shown in Fig. 9 and Fig. 10. 

 

Figure 9: Time dependence of output angle of rotation – upper axis 

 

Figure 10: Time dependence of output angle of rotation – lower axis 

The data obtained from the measurements were modified in 
MATLAB - normalized by the command mapminmax to the 

interval <-1;1>. After this adjustment, they were imported into 
the System Identification Toolbox, where was identified the U/ϕ 
dependence separately for the upper and lower axes, but also 
the U/Δp dependence. The simulation results were compared 
based on Goodness of Fit (Fgof), whose mathematical formula is 
expressed by the Eq. 4. The criterion compares the output of the 
system with the output of the model, where N means the 
number of samples, y(n) output of the system on the k-th sample 
and ӯ(n) output of the model on the k-th sample. 

 

𝐹𝑔𝑜𝑓 =

(

 1 −

√∑ [𝑦(𝑛) − �̂�(𝑛)]2𝑁
𝑘=1

√∑ [𝑦(𝑛) −
1

𝑁
∑ 𝑦(𝑛)𝑁
𝑘=1 ]

2
𝑁
𝑘=1 )

 𝑥100% (4) 

5 RESULTS OF SIMULATIONS IN SYSTEM IDENTIFICATION 
TOOLBOX 

In the System Identification Toolbox were set the parameters of 
the MLP model before the simulation (their overview is shown 
in Tab. 1). The block diagram of the nonlinear model architecture 
shown in the toolbox is illustrated in Fig. 11. The basic 
parameters for such an architecture are inputs u, system´s 
outputs y, and model outputs ӯ. In this case, the architecture 
encompasses a linear and nonlinear block. Identified models 
differ mainly in the number of neurons used, the type of neural 
network, the number of inputs u and outputs y. 

Table 1: Overview of initialization parameters in System Identification 

Toolbox 

Parameters 

Delay 40 samples 

No. of terms u1 2,3,4 samples 

No. of terms y1 2,3,4 samples 

Nonlinearity wavelet, sigmoid 

Number of neurons 1 and 10 

Training algorithm Gauss – Newton algorithm 

Number of iterations 20 iterations 

 

 

Figure 11: Architecture of nonlinear models in System Identification 

Toolbox 

Table 2: Overview of simulation results for upper axis  

Upper 
axis 

U/φ 

 

Delay 

No. of 

terms 
u 

No. of 

terms 
y 

Number 

of 
neurons 

Nonlinearity 
Fgof 

[%] 

nlarx1 40 2 2 1 sigmoid 64,78  

nlrax6 40 3 3 10 sigmoid 57,79  

nlrax10 40 4 4 10 sigmoid 61,76  

Upper 
axis 

U/Δp 

Delay 

No. of 

terms 
u 

No. of 

terms 
y 

Number 

of 
neurons 

Nonlinearity 
Fgof 

[%] 

nlarx15 40 2 2 1 wavelet 76,80  

nlrax19 40 3 3 1 wavelet 75,04  

nlarx21 40 4 4 1 sigmoid 75,18  

 



 

 

MM SCIENCE JOURNAL I 2019 I DECEMBER  

3461 

 

 

Figure 12: The best models from identification upper axis - U/ϕ 

Based on the results, the best model was selected for each of the 
axes. Because the best models will continue to work on further 
simulations (MISO identification), the data will remain 
normalized, so the results of the Fgof parameter are for 
normalized data. A summary of the best simulation results for 
upper axis (dependence U/Δp and U/ϕ) is given in Tab. 2. 

Fig. 12 shows the time dependence of the angle of rotation for 
the 3 best simulation models. Fig. 13 shows the time 
dependence of the pressure difference in the muscles also for 
the 3 best models for the upper axis. In both cases the output 
curves of the models are color-coded (blue - 2 delays, red - 3 
delays, green - 4 delays), the output of the system is marked with 
a black curve. 

 

Figure 13: The best models from identification upper axis - U/Δp 

 

For the lower axis, the results of the identifications are 
summarized in Tab. 3 for both dependencies. In Fig. 14 and Fig. 
15 can be seen a graphical interpretation of simulation outputs, 
where are again selected the best three models for each 
dependence. Colour curve interpretation is the same as for the 
upper axis. 

 

Table 3: Overview of simulation results for lower axis 

Lower 
axis 

U/φ 

 

Delay 

No. of 

terms 
u 

No. of 

terms 
y 

Number 

of 
neurons 

Nonlinearity 
Fgof 

[%] 

nlarx4 40 2 2 10 wavelet 74,58 

nlrax6 40 3 3 10 sigmoid 82,83 

nlrax10 40 4 4 10 sigmoid 79,71 

Lower 
axis 

U/Δp 

Delay 

No. of 

terms 
u 

No. of 

terms 
y 

Number 

of 
neurons 

Nonlinearity 
Fgof 

[%] 

nlarx16 40 2 2 10 wavelet 79,91 

nlrax18 40 3 3 10 sigmoid 74,59 

nlarx23 40 4 4 1 wavelet 76,58 

 

Figure 14: The best models from identification lower axis - U/ϕ 

 

Figure 15: The best models from identification lower axis - U/Δp 

Based on the results interpreted in the last tables, it is possible 
to state the following: 

• it is not dominate only one type of nonlinearity; 

• better results were obtained with 1 neuron at the upper 
axis and for lower axis with the number of neurons 10; 

• for both axes, the best results were achieved with two 
terms in both input and output regressor vectors; 

• the upper axis showed greater oscillation, so the results 
of the Fgof parameter are worse than the lower axis. 

6 CONCLUSIONS 

The main objective of the experimental research described in 
this article was the identification of two separate SISO systems 
whose best simulation results serve to identify the MISO system 
(mentioned in the Introduction). Simulations were implemented 
in the Matlab software using the System Identification Toolbox. 
The I / O system was identified using the chosen MLP tool. The 
results are described in the previous chapter, while the best 
results are selected for further simulations. 
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