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This paper presents the limitations of classical Shewhart control 
charts and some possibilities of statistical process control that 
can be used when the basic assumptions about data have not 
been fulfilled. These basic assumptions that must be met 
include mainly a requirement on the normality of the data, the 
requirement for constant mean and variance, and last but not 
least the requirement for mutual independence of data. In 
practice, those assumptions about the data are not necessarily 
always met. The aim of this article is to introduce the problems 
(such as normality failure, data dependence) that can occur 
when applying the classic Shewhart control charts. Additional 
aim of this article is to describe some non-parametric control 
charts and concretely introduce one of the non-parametric 
control charts, namely Shewhart sign control chart, including a 
practical example from a metallurgical process. During 
preparation of this article accessible pieces of knowledge on 
the issue were compared. Comparing the parametric and 
nonparametric methods it was found that nonparametric 
methods have many advantages and for cases where some of 
the basic assumptions about the data are not met they are 
appropriate.  
 

KEYWORDS 
production management, statistical process control, Shewhart 
control charts, nonparametric control charts, Shewhart sign 
control chart 

1 INTRODUCTION  
Statistical process control (SPC) is an immediate and continuous 
process control based on the mathematical-statistical 
evaluation of the product quality. If a company wants to 
achieve the high quality consistently, it has to collect, process 
and analyze systematically data available from the production 
and conclusions of the analysis must be used for continuous 
improvement. To use the classic Shewhart control charts, the 
certain basic assumptions about the data must be met. In the 
manufacturing practice, however, it is not always possible to 
meet these basic assumptions. The aim of this paper is to 
emphasize the limitations of the classical Shewhart control 
charts and answer the question how to control the production 
process  if not met the basic assumptions about the data. 

2 CLASSICAL SHEWHART CONTROL CHARTS  
Statistical process control allows interventions in the process 
based on the early detection of deviations from a 
predetermined level. The aim of the SPC is to keep the process 
at the required and stable level. It is implemented by regular 
monitoring of the controlled process variable or output 

variable. It is founded out whether it corresponds to the level 
required by the customer. Achieving the desired level of the 
process requires a thorough analysis of the process variability. 
[Nenadal 2008] 
Most publications about the SPC deal with the processes that 
meet the basic requirements needed for the use of the classical 
Shewhart charts. These assumptions include: [Bakir 2001; 
Jarosova 2015] 

 compliant capability of the measurement system 

 normal distribution of the quality characteristics, 

 constant mean and variance, 

 mutual independence of quality characteristics values 

 a sufficient quantity of data, 

 sensitivity to greater changes in process, 

 monitoring single quality characteristics per unit of 
product.  

The main tool of statistical process control is the control chart. 
It is used to decide whether a process statistically stable or not. 
It shows the development of the process variability in time and 
uses principles of statistical hypothesis testing. Control chart 
consists of a central line CL, the upper control limit UCL and 
lower control limit LCL. Upper and lower control limits define 
the zone of influence of random causes of variability. On the x- 
axis the order of subgroups is plotted. On the y-axis the sample 
characteristic used as a test statistics in the control chart is 
plotted. The process can be considered as statistically stable if 
the values of the sample characteristic for all subgroups are 
within control limits and do not form any nonrandom pattern 
[Jarosova 2015]   

 

2.1  The risk of false and missing signals  

For the controlled variable (monitored quality characteristic or 
technological parameter) as a random variable, the hypothesis 
about the values of parameters of its probability distribution is 
being formulated. This null hypothesis should be formulated in 
the way that the process meets the quality requirements when 
this hypothesis is true (so that the process could be considered 
statistically stable). This null hypothesis is repetitively tested 
based on the regularly repeated, mostly small samples (rational 
subgroups). Rejecting the null hypothesis (points outside the 
control limits, trends or some non-random patterns) is the 
signal that the process with high probability deviated from the 
supposed state (it means that the process is out of control (it is 
not statistically stable) and some control action must be 
accepted and implemented. Control action equals to the 
identification and partial or total elimination of the assignable 
cause that caused the signalled undesirable changes in the 
process behaviour.  

Null hypothesis H0 in SPC means that the process is 
statistically stable; alternative hypothesis H1 means that the 
process is not statistically stable. The area between control 
limits LCL and UCL in the control chart constitutes the domain 
of acceptance of the null hypothesis, and the area outside the 
control limits is the domain of rejection of the null hypothesis. 
Values of the control limits LCL and UCL are called critical values 

depending on the significance level , i.e. the probability of the 
type I. error. 

In SPC the probability of type I error (denoted as ) is called the 
risk of a false signal (false alarm). It represents probability of 
the vain search for an assignable cause based on the symptom 
of instability in the control chart (point outside the control limit 
or some non-random pattern) even if the process, in fact, has 
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not changed (see Figure 1a)). This incorrect result is associated 
with the costs of searching for a non-existing problem. 

     In SPC the probability of type II. error (denoted as ) is called 
the risk of a missing signal. It is the probability that a control 
chart is not able to detect significant change of the process 
immediately after its appearance (there is no point outside the 
control limit, no instability pattern in a control chart). This 
incorrect result leads to the costs due to the missing control 
action. In Figure 1 b), c) this situation is depicted for a 
significant shift of the level of the controlled variable from the 

desirable target 0 to the undesirable (critical) level 1 or -1. 

The value (1 - ) is generally called the test power. It is the 

probability that the critical shift from 0 to 1 will be revealed 
in the first subgroup after its appearance. The graphical 
representation can be seen in Figure 1. [Jarosova 2015]   

 

Figure 1. The risks of false alarm and missing signal  [Jarosova 2015] 

 

2.2 Data assumptions and their verification 

Before selection and application of the classical Shewhart 
control charts assumptions about the distribution of the 
controlled variable must be checked. These assumptions 
include among others the independence of the data, a normal 
probability distribution and constant mean and variance. This 
verification has been performed using a variety of statistical 
tests or graphical tools. [Jarosova 2015]   
 

2.2.1 Normality 
 
Normal distribution is a prerequisite for the application of most 
statistical methods, including classical Shewhart charts. 
 
If this assumption is not met, it is expected that the control 
chart will not have the expected properties. This also applies to 
other assumptions. For classical control chart a higher 
probability of false signals must be expected. For verification of 
normality there are many tests, which can be divided into 
directional or bidirectional tests and omnibus tests. The tests 
differ in their power, i.e. ability to detect various departures 
from normality. Shapiro-Wilk test and its modifications, 
Anderson-Darling test, R-test Jarque-Bera test are considered 
being the most powerful ones [D'Agostino 1986; Madansky 
1988; Strelec 2010]. The modern approaches in the area of 
testing hypotheses about the normality of the data include 
robust tests [Strelec 2010]. The null hypothesis H0 is defined for 
all normality tests as follows: assessed data come from a 
normal distribution. [Jarosova 2015]   
 

In the next paragraphs the most powerful tests for normality 
checking are briefly described. 
 

 Shapiro - Wilk test 
 
It belongs to omnibus tests, which are used in the 
case that there is no information about what kind of 
deviation from the normal distribution is to be 
expected. This test is based on the analysis of 
variance. The value of the test statistics reflects how 
close the points to the line of best fit lie. It is suitable 

for a range of choice 503  n . [Jarosova 2015]  
The Shapiro-Wilk W statistic is basically the ratio of 

2
̂  to S2, the sample variance. In particular, 
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The ai of (1) are the optimal weights for the weighted 
least squares estimator of σ given that the population 
is normal distribution. [D'Agostino 1986] 
 

 Shapiro –Francia test 
 
Shapiro and Francia addressed the problem of a 
weights of the Shapiro – Wilk test by noting that for 
large samples the ordered observations may be 
treated as if they were independent. With this, the a 
weights of (2) can be replaced by 
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and the W statistic of (1) can be replaced by 
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c is the vector of the expected values of the n order 
statistics from the standard normal distribution. 
Values of c are readily available for n up to 400. 
[D'Agostino 1986] 
 

 Royston modification  
 
Royston carried out further approximation of a, so 

extended interval for 20007  n . [Madansky 

1988] 
 

 Anderson - Darling test 
 
It is a modification of the Kolmogorov - Smirnov test 
and it is used to identify the distribution of sample 
data. This test has specific critical values for each type 
of distribution. It belongs to a class of quadratic tests 
based on empirical distribution function (EDF). For 
the meaningful results of this test the selection of 
sample size n ≥ 50 is recommended. [Kotlorz 2012; 
Salda 2010] 
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 Tests based on the skewness and kurtosis  
 
One of the methods how to distinguish between two 
different distributions is to compare their central 
moments. For k ≥ 2 is the central sample moment of 
kth order from a random sample x1, x2, ... xn defined 
by a relationship 
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For the skewness test the statistics below will be used  
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In the case of kurtosis the test statistics is determined 
by the relationship 
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where H0 is rejected when 
1b

 it is larger than the 

critical value and b2 does not lie in the interval 
between the upper and lower critical value. [Kotlorz 
2012]  
 
There are also tests that test both, kurtosis and 
skewness, simultaneously. One of them is Jarque - 
Bera test. For this test the sample of size n ≥ 200 is 
recommended. The test statistic is as defined 
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the null hypothesis is rejected in case that the 
formula below is not true 
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 R-test  
The simplest omnibus test consist of performing the 

1
b   test at level α1 and the b2 test at level α2 and 

reject normality if either test leads to rejection. The 
overall level of significance a for these two tests 
combined would then be, by Bonferroni´s inequality, 

21    (9) 

Pearson, D´Agostino, and Bowman showed that if 


  221 a good approximation to the overall 

level of significance is 
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The term R-test was given to the above omnibus 
procedure because it can be viewed as employing 
rectangular coordinates for rejection normality. 
[D'Agostino 1986] 

 
 

 Q - Q chart 
 

It is a graphical tool that enables to examine whether 
the data come from a certain type of distribution or 
not. The individual values are plotted on the y-axis 
and the quantiles Kαj(X) on the x-axis. Then, using the 
method of least squares the line of best fit is drawn 
through the points [Kαj(X);x(j)]. The less the points from 
this line vary, the greater is the correspondence 
between theoretical and practical distribution. 
Example of Q-Q plot can be seen in Figure 2. [Salda 
2010] 
 

 

Figure 2. Q-Q chart [Salda 2010] 

 
 Normal-probability plot 

 
It is one of the P-P diagrams and can be used as an 
alternative to Q-Q graphs. The distribution function of 
selection is compared with a standardized 
distribution function of the selected theoretical 
distribution; in the case of normal probability plot 
with the distribution function of the normal 
distribution. [Jarosova 2015]   
 

When deciding on the validity of the assumption of normality it 
is advisable to choose a combination of multiple tests. If the 
test results match the decision is easy. If the test results are 
different, it is necessary to carry out their thorough analysis 
and find the cause of these contradictions. [Jarosova 2015]   
 

2.2.2 Independence    
Independence of data can be expressed as a random variation 
around the mean value where no dependency appears. The null 
hypothesis is defined as H0: data are independent. To verify 
independence the following tests may be used: 
 

 Autocorrelation 
 
The standard attack on the question of whether the xi 

are independent is to check for serial correlation by 

correlating to series  ix  with the series lix  , 

where l is the size of the gap between observations 
being correlated.  The usual resolution is to define the 
lth autocorrelation as [Madansky 1988] 
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 Runs Above and Below the Median 
 
Let ν be the median of the distribution of x. Suppose 
we associate with each xi a variable ui, where 
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Consider now the sequence ui,…,un and let p denote 
the number of ui which are equal to 1. Conditional on 

the value of p there are 







p

n
  possible sequences of 

p 1´s and n-p 0´s of which our observed set is one of 
these sequences. 
One statistic based on the sequence of ui which is a 
useful indicator of the independence of the ui is the 
"runs count".  We define a "run" as a maximal 
consecutive set of ui´s having the same values. The 
sequence of ui´s can be counted. 
A low runs count is indicative of one kind of deviation 
from independence, namely a tendency for below - 
median x´s and above - median x´s to be observed in 
clusters. A high runs count is indicate of another kind 
of deviation from independence, namely a tendency 
for a below - median observation to be followed by 
an above - median observation. [Madansky 1988] 

 

 Test iterations up and down 
 
In this test, the "+" sign assigns a value if it is greater 
than the previous value xi + 1> xi and "-" sign in the 
opposite case, xi + 1 <xi. [Jarosova 2015]   

 

2.2.3 Homogeneity of means and variances 
 
Equality of the mean values can be tested using analysis of 
variance ANOVA. The null hypothesis and alternative 
hypothesis are defined as  
H0: μ = μ0 
H1: μ ≠μ0. 
For verification of variance homogeneity there are various 
tests. But they differ in their robustness and power. The null 
hypothesis H0 and alternative hypothesis H1 for such tests are 
defined as follows: 
H0: σ²1 = σ²2 = … =  σ²M. 
H1: At least one pair of variances differs [Jarosova 2015; 
Madansky 1988]   
Before selection of the suitable variance homogeneity test it is 
necessary to verify if the samples are independent and if the 
data are normally distributed. In addition equality of samples in 
size must be taken into account, too.  
In Table 1. there are summarized presumptions for application 
of five variance homogeneity tests. “Y” means that given test 
requires meeting the labelled presumption, “N” means that it is 
not necessary to meet the labelled presumption.  
 
 

 

 Presumptions  

Test Sample 
indepen-

dence 

Sample 
size 

equality 

Number 
of 

samples  

Normality 
of data in 
samples 

Hartley y y ˃ 2 y 

Cochran y y ˃ 2 y 

Bartlett y N ˃ 2 y 

Levene y N ˃ 2 N (robust 
to the 
smaller 
departures 
from 
normality) 

Brown-
Forsyth 
(modified 
Levene) 

 
y 

 
N 

 
˃ 2 

N (robust 
to the 
larger 
departures 
from 
normality) 

Table 1. Variance homogeneity tests and presumptions for their 
application [own source]  

 
Additional information on this tests can be found in [Howard 
2010]. 
 
When the particular presumption for the application of classical 
Shewhart control charts has not been met it is possible to apply 
some of numerous non-classical parametric control charts 
defined for such situation. The basic summary of these control 
charts can be found in Table 2.  [Jarosova 2015].   
 

Table 1. Selected non-classical parametric control charts  [Jarosova 
2015] 

 
Application of the parametric methods of statistical process 
control requires knowledge of the methods for verification of 
data presumptions and expert knowledge of various parametric 
control charts. As it is evident from the previous parts of the 
paper there are numerous methods for the data presumptions 

Situation SPC method 

Data non-
normality 

Control charts with asymmetric limits 
Control charts with re-transformed 
limits  

Non-constancy of  
distribution 
parameters 

Modified control charts 
Acceptance control charts  
Regression control charts  
Control charts with relaxed limits  

Auto-correlated 
data 

ARIMA charts 
Charts for EWMA residuals  
Dynamic EWMA charts 

Low level of the 
process 
repeatability 

Target control charts  
Standardized control charts 
Q-charts 
Hillier´s method 

Small shifts in the 
process 

CUSUM charts 
EWMA charts 

Monitoring several  
characteristics 
simultaneously 

Hotelling´s charts 
MCUSUM chart 
MEWMA chart 

High-yield 
processes 

CCC, CCC-r charts 
CCC CUSUM, CCC-r CUSUM charts 
CCC-EWMA, CCC-r EWMA charts 
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verification and the selection of the correct test also supposes 
knowledge and verification of the conditions in which the 
particular test is sufficiently powerful. Thus in spite of the SW 
support, the application of the parametric control charts is 
rather complex. 

3 NONPARAMETRIC CONTROL CHARTS 

In non-compliance with data assumptions for application of the 
classical Shewhart control charts (see chapter 2 of this paper), it 
is also possible to apply nonparametric methods. 
Nonparametric statistical process control (NSPC) is based on 
methods that are not dependent on a specific type of the 
probability distribution. The use of these control charts is not 
only suitable for processes that do not meet normality and 
independence of the data, but especially in the beginning of the 
SPC implementation, when there are not enough data 
available. [Chakraborti 2001] 

Nonparametric methods are based on a smaller number of 
observations. Compared to the model based methods most 
often it is only assumed that the probability distribution of the 
given data set is of the continuous type.  [Zvarova 2011] 

Nonparametric methods have, compared to parametric 
methods, a number of advantages: 

 conclusions obtained are independent of the 
distribution shape, 

 they can be used even when the type of distribution 
is unknown, 

 they are used in cases where sample size is too small, 

 they can be used for ordinal (serial) variables, some 
also for nominal (verbal) variables, 

 for small sample size the calculation is relatively 
simple, 

 they have a greater robustness to the occurrence of 
outliers. 

Disadvantages of non-parametric methods include the 
increased probability of missing signal, which means that it 
often leads to incorrect non-rejection of untrue null hypothesis. 
This probability can be reduced by increasing the sample size.  
[Chakraborti 2001, Stiglic 2009]  

Below there are some nonparametric methods that can be 
used if the basic assumptions, such as data normality, mutual 
independence or constant mean and variance are not met. 

 Shewhart Sign Control Chart 

It is one of the simplest non-parametric control 
charts. It is based on simple statistics that tracks the 
difference between the number of observations 
above and below a predetermined target value. [Bakir 
2015, Chakraborti 2001] 
 

 EWMA-DFCC (Exponentially-Weighted Moving 
Average – Distribution Free Control Chart) 
 
It is a nonparametric control chart of exponentially-
weighted moving averages. It combines the 
properties of the classical EWMA chart with the 
robustness of nonparametric charts. Hackl and 
Ledolter [Hackl 1992] considered the use of 
nonparametric control chart for individual 

observations using a standardized series of the 
observations. The simulation studies showed that the 
method is resistant to the outliers and works well 
even with sudden changes in the process. [Bakir 2001, 
Graham 2011, Chakraborti 2001] 
 

 CUSUM-DFCC (Cumulative Sum – Distribution Free 
Control Chart) 
 
CUSUM charts are suitable in the case of sequential 
nature of the process control. One of the problems of 
the Shewhart sign control chart is the fact that the 
target value must be known. Application of the 
nonparametric CUSUM control chart is one of the 
ways to avoid this problem. This technique was 
originally developed by McGilchrist and Woodyer 
[McGilchrist 1975] for monitoring the amount of 
rainfall. [Bakir 2001, Graham 2011, Chakraborti 2001] 
 

 Pre-control 
 
Ledolter and Swersey [Ledolter 1997] considered the 
possibility of using the pre-control as one of the 
alternatives to the Classical control charts. When 
comparing the standard control charts to the pre-
control, they found out that the pre-control is of 
some importance, especially in machining. However, 
in general the pre-control is not an adequate 
substitute for the control charts.  [Chakraborti 2001] 
 

 Change- point chart 
 
This is a problem, when the change of distribution 
type occurs in the number of independent random 
variables after the first observation. It is an issue dealt 
by Bhattacharya and Frierson [Bhattacharya 1981]. 
The aim is to detect an unknown change-point 
without a large number of false signals and without 
having to know any assumptions about the type of 
probability distribution data. The nonparametric 
control chart was designed based on the weighted 
sum of values in a row and on the asymptotic 
behavior of the cumulative sums, assuming that there 
are small changes in distribution after a large number 
of observations. [Chakraborti 2001] 
 

 Bootstrap Method 
 
It is a relatively young method. It was not practically 
possible to use this method before the advent of 
computers [Hall 1992]. It is a resampling of the 
original data set. From the original data there are 
generated bootstrap samples from which there are 

calculated samples characteristics ̂ , it is repeated k-

times. The values ̂  obtained from bootstrap samples 

are used to calculate the characteristics  of the 

original data set. [Chernik 2008] 

4 SHEWHART SIGN CONTROL CHART 
 

Let Xi1,Xi2,…,Xin (i=1, 2, …) denote (i = 1, 2, ...) sample or 
subgroup of independent observations of size n > 1 from a 
process with an unknown continuous distribution function F . 

Let 0 denote the known or specified target value. Let’s 
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compare each ijx ( j = 1, 2, …, n) with 0  . Let’s record the 

difference between 0 and each ijx   ( ijx - 0 ). There will be n 

such differences, for the ith sample. Let n+ denote the number 

of observations with values greater than 0 in the ith sample. 

Let n- denote the number of observations with values less than 

0 in the ith sample. Sum n+ + n- = n, if the number of zero signs 

is zero. 

Shewhart sign statistic is defined as 

 



n

j
ijxsigniSN

1 0    (12) 

where 

 0ijxsign  = -1, 0 or +1, if  0ijx  < 0, = 0 or > 0. 

Then SNi is the difference between n+ and n- in the ith sample, 
i.e. SNi is the difference between the number of observations 

with values greater than 0 and the number of observations 

with values less than 0 in the ith sample. The control limits and 

the center line of the two-sided nonparametric Shewhart-type 
sign chart (for the median) are given by UCL = c, CL = 0 and         
LCL = -c. 

ntc  2  (13) 

where c ϵ{1, 2, ..., n} and n is a subgroup size. Value t can be 

obtained from table for binomial distribution for  =0,5 - see 

Gibbons and Chakraborti [Gibbons 2003]. 

When the control chart includes all points between the control 
limits, the process is in-control. If any point is located on one of 
the control limit, if it is below the lower control limit or above 
the upper control limit, it means that the process is out-of-
control. In this case, we have to find the cause and implement 
corrective measures. [Graham 2008]   

5 EXAMPLE 
 

The following example illustrates the application of Sign 
Shewhart Control Chart on the data obtained from the 
steelmaking process (Table 3). There was measured carbon 
content in the steel each day. The measured values are 
recorded in the table, in the columns x1 to x5. The target value 

%29.10  . With this value we will compare the data in the 

thirty-one subgroups each of five units. For each value we will 
compute the difference between the measured and the target 

value  0ijxsign  and we will write it into the table as -1, 0, 

or +1 depending on whether the released  0ijxsign  < 0, = 

0 or > 0. Subsequently, for each subgroup we will calculate the 

value iSN according to the formula (12). Now we can proceed 

to the calculation of control limits, according to the formula 
(13) and construct the control chart (Figure 3.). Subgroup size is 
n = 5 and from table [Gibbons 2003] t = 5, so the value

5552 c . It follows that UCL = 5, CL = 0 and LCL = -5. 

  

 
 

Figure 3. Data [own source] 

Datum x1 x2 x3 x4 x5 SNi

1.272 1.767 1.601 1.348 1.534

 -1.00 1.00 1.00 1.00 1.00

1.454 1.324 1.435 1.193 1.237

1.00 1.00 1.00  -1.00  -1.00

1.509 1.886 1.546 0.882 1.787

1.00 1.00 1.00  -1.00 1.00

1.038 1.349 0.898 1.393 1.671

 -1.00 1.00  -1.00 1.00 1.00

1.094 1.232 1.612 1.08 1.376

 -1.00  -1.00 1.00  -1.00 1.00

1.361 1.53 1.083 1.167 1.325

1.00 1.00  -1.00  -1.00 1.00

1.024 1.542 1.313 1.371 1.072

 -1.00 1.00 1.00 1.00  -1.00

0.933 1.394 1.13 1.335 1.376

 -1.00 1.00  -1.00 1.00 1.00

1.168 1.121 1.264 0.95 0.903

 -1.00  -1.00  -1.00  -1.00  -1.00

1.182 1.062 1.016 1.345 1.064

 -1.00  -1.00  -1.00 1.00  -1.00

1.528 1.571 1.501 1.242 1.217

1.00 1.00 1.00  -1.00  -1.00

1.077 0.826 1.062 1.283 1.396

 -1.00  -1.00  -1.00  -1.00 1.00

1.169 1.289 1.476 1.745 1.479

 -1.00  -1.00 1.00 1.00 1.00

1.373 1.194 1.001 1.082 0.909

1.00  -1.00  -1.00  -1.00  -1.00

1.214 1.198 1.413 1.49 1.137

 -1.00  -1.00 1.00 1.00  -1.00

1.281 0.986 1.509 1.579 1.388

 -1.00  -1.00 1.00 1.00 1.00

1.281 1.214 1.391 1.327 1.051

 -1.00  -1.00 1.00 1.00  -1.00

1.106 1.407 1.508 1.558 1.173

 -1.00 1.00 1.00 1.00  -1.00

1.295 0.99 1.636 1.383 1.507

1.00  -1.00 1.00 1.00 1.00

0.912 1.271 1.633 1.378 1.483

 -1.00  -1.00 1.00 1.00 1.00

1.695 1.044 1.65 1.536 1.46

1.00  -1.00 1.00 1.00 1.00

1.317 1.185 1.218 1.778 1.613

1.00  -1.00  -1.00 1.00 1.00

1.507 1.244 1.158 0.941 0.855

1.00  -1.00  -1.00  -1.00  -1.00

0.716 1.029 1.248 1.046 0.757

 -1.00  -1.00  -1.00  -1.00  -1.00

1.206 1.145 0.772 1.109 1.137

 -1.00  -1.00  -1.00  -1.00  -1.00

1.213 1.549 1.463 1.468 1.713

 -1.00 1.00 1.00 1.00 1.00

1.276 1.223 1.32 1.199 1.321

 -1.00  -1.00 1.00  -1.00 1.00

1.419 0.968 1.032 1.107 1.066

1.00  -1.00  -1.00  -1.00  -1.00

0.982 0.706 1.174 1.044 1.137

 -1.00  -1.00  -1.00  -1.00  -1.00

1.067 1.309 1.046 1.031 0.989

 -1.00 1.00  -1.00  -1.00  -1.00

1.169 0.909 1.637 1.038 1.04

 -1.00  -1.00 1.00  -1.00  -1.00
31.1.2015 -2

28.1.2015 -3

29.1.2015 -4

30.1.2015 -2

25.1.2015 -5

26.1.2015 3

27.1.2015 -1

22.1.2015 1

23.1.2015 -3

24.1.2015 -5

19.1.2015 3

20.1.2015 1

21.1.2015 3

16.1.2015 1

17.1.2015 -1

18.1.2015 1

13.1.2015 1

14.1.2015 -3

15.1.2015 -1

10.1.2015 -3

11.1.2015 1

12.1.2015 -3

7.1.2015 1

8.1.2015 1

9.1.2015 -5

4.1.2015 1

5.1.2015 -1

6.1.2015 1

1.1.2015 3

2.1.2015 1

3.1.2015 3
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Figure 4. Shewhart sign control chart  

The chart shows that in the ninth, twenty-fourth and twenty-
fifth subgroup point lies on the lower control limit, which may 
mean exposure to assignable causes of variability that should 
be analyzed and subsequently eliminated. In the classical 
Shewhart control chart for average there did not appear the 
assignable cause in the process. 

6 CONCLUSIONS 

This article summarizes some of the shortcomings of classical 
Shewhart control charts (such as the necessity of normal 
distribution of data, mutual independence of data, and more). 
It offers the possibility of using non-parametric control charts, 
which eliminates these drawbacks. Specifically, it represents 
one of the non-parametric control chart and on the practical 
example illustrates the simplicity of its use in practice. The aim 
of the further work is a detailed look at how to control the 
production process, when some of the basic assumptions about 
the data are not met, and creating a methodology for control of 
such production process. The results will contribute to the 
development of statistical process control and process 
capability analysis. The proposed methodology could help in 
the decision-making processes in practice. 
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