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Abstract 

In this paper, different approaches to visualize CAM simulation results are presented. Simulated 
machined surfaces can be rendered in a photorealistic manner taking into account real tool motions and 
vibrations measured during the machining process. The actual tool trajectories are used to derive the 
microrelief of machined surface that lead to different reflective properties to be used in the CAM surface 
rendering pipeline. Broaching and grinding were two machining processes to adopt this photorealistic 
visualization. First, the generic CAM simulation computed the triangulated representation of the in-
process workpiece. Second, the triangles were enriched with the computed micro topography information 
that is used by the developed shader implementation during the visualization process.  
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1 INTRODUCTION 

Nowadays, the manufacturing industry relies on the use of 
CAM simulation and NC verification before actual 
production. CAM simulation has proven to foresee and 
prevent substantial failures during machining, such as 
collisions and gouges between the tool and workpiece. 
However, CAM simulation software cannot grasp on the 
issues arising during the machining process. For instance, 
chatter issues may result in severe deterioration of the 
machined surface quality. Some machining processes, as 
ball-end milling, generate rough surfaces even without any 
chatter. Eventually, CAM users do request to include the 
surface roughness simulation into CAM software, but such 
a development is not trivial. 

[Liu 2005] addressed the visual surface appearance of 
parts machined by a rotating, multi-flute, ball nose milling 
cutter. It was an attempt to consider the micro pattern 
pertaining to the cutting action of individual cutter flutes.  

[Bilalis 2009] also, like [Liu 2005] determined the machined 
surface topography as a cloud of points retrieved from the 
visualization system Z buffer to calculate surface 
roughness. Different roughness metrics were calculated 
from the simulated surface, and isolines of the surface 

properties were depicted with different colors on the 
surfaces. 

[Wang 2016] simulated surface scallop topology after five-
axis milling. Simulation was performed microscale to 
identify roughness properties. Then, the set of these 
properties was assigned as a color code to the entire 
surface machined during the operation. 

[Klimant 2014] described a simulation method for NC 
programs. They used real axis values from a real CNC to 
simulate the milling process by means of a CAD kernel. The 
resulted CAD geometry was used for virtual metrology. Part 
visualization was the conventional CAD visualization with 
the uniform color. 

[Brecher 2017] presented an advanced virtual environment 
to predict part shape distortions and combine them with the 
surface quality measurement to show with different color 
codes. 

The objective of this paper is to explore several approaches 
to define advanced visualization techniques suitable for 
digital twins aiming to predict workpiece quality. At present, 
most of the quality controls are performed after the part has 
been manufactured, which can lead to rework operations, 
thus increasing the cost of time and machines, or even 
more importantly, a total refusal of the part if the defects are 
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irrecoverable. With the quality oriented digital twins, the 
problem of quality control must be addressed before and 
during the manufacturing process. Existing metrics to 
assess the surface quality are not enough to 
comprehensively qualify the part, and in some cases the 
part must be visually inspected by a naked eye to evaluate 
the reflective properties of machined parts. 

Multiple machining processes – broaching, cylindrical 
grinding and, to some extend, turning – were considered for 
implementing real time visualization of the metallic 
reflectivity and the surface visual artifacts (grooves, etc.). 

2 WORKPIECE DATA 

The rendering approach we are going to present uses a 
discrete, triangulated workpiece model as input. We create 
it with a 3D removal simulation kernel that has the capability 
to attach additional information to the workpiece surface 
mesh. With this, we are able to distinguish surface areas 
that have been machined with different tools from each 
other. We will see later how this is utilized for the some of 
the workpiece visualization techniques. 

Most of the commercial CAM software use tri-dexel data 
model [Benouamer 1997] that defines volumes in a discrete 
manner. As shown in Fig. 1, a solid model can be 
represented by several linear segments that are aligned to 
X, Y, and Z axes. The tri-dexel model consists only the 
linear segments, basically the end points of each segment. 
Information at every point is enriched with additional 
properties, like the surface normal and tool move number. 
The surface of the solid model is not stored in the tri-dexel 
grid (field). In order to be able to visualize the surface of the 
part, an additional algorithm must reconstruct the local 
surface patches between end points of dexels considering 
their spatial coordinates and surface normal vectors at 
these points. 

The tri-dexel model is proven to curb memory consumption 
in contrast to triangulated surface. During milling simulation, 
the storage space is expected to grow relatively moderately 
regardless the complexity of the simulated part. However, 
this advantage is due to a trade-off, that some geometric 
features, which are smaller that the distance between 
neighbor dexels, may not be spotted by the simulation. 

 

Fig. 1: Solid (semi-transparent) and tri-dexel models (red-
green-blue line segments) 

3 REAL TIME RENDERING 

The visualization techniques presented in this article are all 
implemented in a real time rendering environment utilizing 
C++ and OpenGL. In OpenGL version 4, the shader 

pipeline looks like Fig. 2. Only the Vertex and Fragment 
Stages must be programmed always. The other shaders 
(round edged items in Fig. 2) are optional and the remaining 
stages are only configurable, but not fully programmable.  

A shader pipeline is very flexible and allows for a lot of 
creativity and customizability. One caveat though is, that 
due to this customization of shader code to a specific 
application’s needs, it is usually not possible to reuse 
shader code from a different application or from learning 
resources directly. This is one reason why we do not use 
third-party visualization or rendering toolkits. That way we 
are more flexible and in full control of the pipeline and can 
especially decide whether it makes more sense to modify 
the input data structures (application side) or the shader 
programs to realize new ideas. 

 

Fig. 2: The OpenGL Rendering Pipeline. 

 

Another downside of a programmable rendering pipeline is 
that one must take care of literally everything. Not even 
transformation of the input geometry or basic lighting 
calculations are provided. It boils down to one basic 
question that the rasterizer will pass on to the Fragment 
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Shader in the last rendering stage: ‘should this fragment be 
skipped or does it have a color, and if so, which’. From there 
one needs to develop through the shader stages, in order 
to gather and forward all the information needed at that last 
pipeline stage, to answer that question. Performance-wise 
it is best to calculate stuff as early in the pipeline as 
possible, as every successive stage will potentially fan out 
multiple operations for each single input value. 

For the ease of understanding, we named the output data 
in Fig. 2 ‘Pixel Data’. Though this is technically not exact, 
the difference between a fragment and a pixel does not 
matter for the contents of this article. A ‘fragment’ can be 
thought of as a single pixel of the final image on the screen, 
for now. 

So, a lot of the basic steps, e.g., transformation and 
perspective projection of the incoming workpiece geometry 
according to the virtual camera position, and especially 
lighting and shading, must be programmed explicitly. This 
renders all the literature from the early ages of computer 
graphics relevant again, because those things had been 
hidden under the hood of graphics programming APIs and 
GPU hardware for decades. Since the early ages of 
computer graphics in the 1970s, technology has changed a 
lot, but the math behind it has obviously not. Now those 
resources are still very valid and surprisingly sufficient as a 
starting point for modern shader programming. 

We use the standard Phong reflection model [Phong 1975] 
to calculate colors for the effect of light sources in the scene 
(to be correct here, the simplification to directional light 
sources we are using is also known as the Blinn-Phong 
reflection model [Blinn 1977]). Basic lighting and material 
appearance calculations are performed with this model. 
This gives the ‘standard’ 3D real time rendering look as a 
base for the following ‘add-on’ visual effects. 

4 BROACHING 

For the simulation of a broaching process, we have split the 
broach tool into single teeth (Fig. 4). The cutting simulation 
kernel then is driven with each tooth modeled as a different 
tool. This gives us the opportunity to mock micro vibrations 
by slightly modifying the tool path of each individual 
tool/tooth. Although the resolution of the mesoscopic 
simulation model is not high enough to provide accurate 
microscopic surface properties from that, it does provide us 
with the information about which tooth of the broaching tool 
did remove material at which surface positions. From that 
we can apply different visual properties to those areas. 

The first implementation provided classical means to assign 
material properties for intact surfaces along with 
customized properties for surfaces created by each 
individual tooth, as shown in Fig. 3. Here, the workpiece 
surface basically appears colored by tooth, along with 
standard lighting. 

A next version of the visualization involves environmental 
texture mapping to create a metallic reflective look (Fig. 3 
(2) and (4)). The implementation uses the traditional 
method as described in [Blinn 1976]. It is the same concept 
that was used in the OpenGL fixed function pipeline. Now 
that we have resembled this as GLSL shader code, we can 
very easily add some modifications for more realism. 

For recreation of the visual effect of different degrees of 
surface roughness, we perturbate the workpiece surface 
normal vectors (per fragment) which are used in that 
reflection calculation. For that we use a concept that is 
known as ‘Perlin noise’ [Perlin 1985], see Fig. 5. This type 
of noise has properties that are substantial for that use 

 

a) After first four teeth engaged, colored by the 
tooth number 

 

b) After four teeth engaged, with reflections 

 

c) At the end of broaching, colored by the tooth 
number 

 
d) At the end of broaching, with reflections 

 

Fig. 3: Visualization of the broaching simulation with 
vibrations. 
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case: ‘It provides a space filling signal that has an 
impression of randomness while being controllable, with no 
high or low spatial frequencies.’ This results in a smooth a 
nd natural appearance. In fact, normal perturbation was one 
of the original use cases for which Ken Perlin developed 
that approach for application in the movie ‘Tron’ in 1982. 
The idea of normal perturbation per fragment itself, as a 
means to increase visual detail beyond the geometric data, 
is even older and traces back to James Blinn in 1978 [Blinn 
1978]. Of course, though the math behind the ideas have 
not changed, the way those are actually implemented has 

drastically changed. 

Our Perlin noise signal is procedurally generated and 

evaluated on the GPU on the fly, just for the required 
surface points. We adopted the basic methods presented in 
[Gustavson 2022] for our noise functions.  

We want to create different appearances for smooth or 
diffuse reflecting surface areas. This is achieved by 
modulating the base frequency and amplitude of the noise 
signal, depending on the material properties that are 
assigned to the specific broaching tool tooth that has 
touched that surface as last. For example, a perfectly 
smooth surface will have perfect, crisp reflection properties. 
This can be achieved by not applying any normal 
perturbation but straightly reflecting in the direction of the 
workpiece surface. For a smooth but slightly diffuse 
appearance we increase the amplitude of the noise. For 
rough appearance we increase amplitude and frequency. 

Technically, we have implemented this by grouping the 
workpiece triangles by tooth as we receive them from the 
3D cutting simulation. Each group is assigned a separate 
material which contains a base color along with other 
parameters for the lighting calculations and for shaping the 
noise signal. There is also a blending factor to control how 
much of the lighting calculation results and how much of the 
reflection calculation results contribute to the final fragment 
color. 

In the rendering loop we then process those groups 
separately: The material parameters are transferred into 
appropriate shader program variables, then the group of 
triangles is rendered. 

The resulting visualization will then appear with different 
color/reflection properties depending on the broaching tool 
tooth that was engaged on that surface point (Fig. 6). 

 

Fig. 5: Typical Perlin Noise.  

 
 
 

 
 

Fig. 4: Tree-shaped broaching tool. 
Top: Edge profiles in interactive 2D plot. 

Bottom: Generated 3D tooth shapes. 
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Different surface colors correspond to different teeth that 
cut the surfaces. 

5 CYLINDRICAL GRINDING AND TURNING 

Grinding or turning of rotation symmetrical parts has 
basically a toolpath consisting of helical polylines. The 

points of this polyline may not be exactly on that helix 
because of the tool and workpiece vibrations. These 
vibrations cause marks on the surface. Even though the 3D 
simulation is not appropriate for visualization on the 
microscopic level, the 3D simulation can still be used with 
mesoscopic resolution, in order to generate plausible 
visualization for quick evaluation of foreseen results, as 
shown in Fig. 8 depicting how visually appealing rendering 
can be achieved via applying different visual material 
properties. In Fig. 8 and Fig. 8 the Perlin noise based 
normal perturbation approach, as described in the previous 
Broaching section of this article, has been applied. The 
stronger grooves on the left side are simulated helix cuts 
and are part of the mesoscopic material removal simulation 
results. Different parts of the workpiece have been 
simulated with different tools so that the workpiece model 
contains different visual materials which can be modified 
interactively. This approach delivered some appealing ‘eye 
candy’ and plausible pictures for the results of a grinding 
process. But for gaining insight into actual results of 
simulated machining processes we now will involve more 
specific information, in order to relate the visual effects to 
the actual vibration phenomena we are simulating, instead 
of applying only some controlled noise. 

For the visualization of turning process results, we use 
micro profiles which contain the surface topography errors 
as axial profiles along discrete angles of the workpiece. The 
application prototype allows to plot them as 2D graphs for 
interactive inspection (Fig. 9). They are given as lists of 
depth offsets perpendicular to the workpiece surface, along 
the part, at different angular positions. 

 

 

 

Fig. 8: Cylindric workpiece with surface visualization trying 
to replicate effects of probing different grinding tools. 

 

Fig. 6: Workpiece after broaching, with reflection 
effects and colored by engaged tooth. 

 

 

 

Fig. 7: Interactive material editor with parameters for 
each simulated tool. 
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The plot shows unitless error magnitude (Y axis), which can 
be scaled respectively to calibration measurements or 
visualization purposes, along the sampling points laying on 
part’s rotary axis (X axis). In this example, there were 359 
profiles (angular step 1.002786 degrees) with 1000 data 
points each, covering a workpiece of 100mm. It depends on 
the concrete profiles, how many are needed to have 
enough data so that a special phenomenon becomes 
visible. E.g. Nyquist-Shannon theorem gives an idea about 
what order of magnitude of data points is needed to 
represent certain features in general. Technically, any 
number of data points and interpolated intermediate points 
can be taken, as long as there are enough computational 

 

Fig. 9: Exemplary axial surface profile plots with results from a simulated micro topography (at different profiles: all 
profiles combined, 0 degrees, and 1.002786 degrees). 
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resources. From this microscopic topography data, we want 
to derive the resulting perturbation of the visual reflection 
effects. 

The first step is to create a height-field from those discrete 
profiles. Basically, all discrete profiles are copied into one 
big chunk of data. This height field is then uploaded to the 
GPU, as real floating-point data, so that no information is 
lost. Older GPU formats used to only allow image data 
with clamped values in the range [0...1], which most of the 
time also involved implicit bit-reduction. So now, with the 
evolution of technology, no error-prone scaling of values 
must happen in the shader computations. For direct 
visualization of that height field, we still create a clamped 
version of it (Fig. 10). From that we can interpolate height 
offsets for each angular position on the workpiece surface 
(unwrapped to tangent space). In Fig. 10 (bottom) this 
map is directly mapped as red color onto the workpiece. 
One can already see a slight interference pattern from 
that, which is not easily visible in the 2D map. 

Next step is the calculation of a normal map: From the 
local surface angles along and between the discrete micro 
profiles in the height map, we create 3D normal vectors. 
That normal map does not actually exist, but the vectors 
are calculated on the fly from the interpolated height filed 
positions, where needed (Fig. 11). They are literally 
derived in tangent space, as partial derivatives in axial and 
angular direction, from the height field. This means that 
we have no upfront limitation regarding the final normal 
map resolution like we might have with pre-calculated 
textures. Of course, the resolution of the original micro 
profile data is still a limiting factor – but even with a low 
count of discrete profiles we could apply different 
interpolation and filtering strategies to improve quality as 
compared to a pre-computed low resolution normal map. 
In Fig. 12 we can see the difference that an interpolated 
(right) vs non-interpolated (left) height field makes: There 

are much more reflection details visible in the interpolated 
version. 

 

 

Fig. 12: Axial profiles combined into a 2D topography 
map (top), mapped onto the workpiece (bottom). 

,   

Fig. 10: Low resolution workpiece (left), with per fragment derived normal vectors, visualized as RGB colors (right). 
 

    

Fig. 11: Close-up of reflection details in grooves on the workpiece surface 
without interpolated surface topography (left), 
with interpolated surface topography (right). 
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For each fragment, we want to determine the corresponding 
surface properties. More precisely, we want to perturbate 
the original workpiece surface normal with the 
corresponding normal that we derived from the height map, 
in tangent space. Because those two normal vectors are 
defined in different spaces, we need to apply some 
transformations so that we can relate them. The TBN 
(Tangent Bitangent Normal) matrix defines that 
transformation and is strictly speaking different for each 
single surface point. We can construct the tangents from 
the input geometry, as we assume a cylindrical workpiece. 
For the more generic case, the input geometry would also 
need to supply tangent vectors. From that we can combine 
the TBN matrix and modulate the original workpiece surface 
normal accordingly. It will then be perturbed according to 
the surface topography described by the axial micro 
profiles. 

This normal then is used, as described before, in the usual 
transform and lighting calculations for the base color, and 
especially for the environmental texture map lookup which 
creates the visual reflection effects). 

We have used this method with synthetical data, which can 
be generated directly in our prototype application (Fig. 14), 
as well as from some more sophisticated simulation results 
from one of our partners (Fig. 13). 

6 REAL TIME RENDERING INFRASTRUCTURE  

For the visualization parts of our prototype application, we 
are using standard C++ and the OpenGL API directly, as 
mentioned before. For the application user interface, we 
utilize some small libraries: ‘Dear ImGui’ [ImGui] for the 
user interface, ‘ImPlot’ [ImPlot] for graphs, e.g., of the micro 
profiles, and of course the cutting simulation kernel, which 
provides the triangle model of the visualized workpiece. 

The prototype implementation uses plain OpenGL v4 with 
GLSL shaders. We utilize Vertex Shaders, Fragment 
Shaders, and (mainly for debugging purposes) also 
Geometry Shaders. 

OpenGL v4 also offers Compute Shaders in case we may 
need them in the future. Compute Shaders basically allow 
to execute shader programs on the GPU without also 
throwing geometry at it which used to be the only way to 
execute shader programs with former OpenGL versions. 
With OpenGL v4 data formats used by shaders can be 
selected much more arbitrary and are no longer limited to 
geometry and image data types only. This not only applies 
to Compute Shaders but to all Shader stages. Thus, it is no 
longer necessary to dress up data as textures which 
removes most burdens that used to be connected to using 
graphics shaders for ‘general purpose’ (GPGPU) 
applications. At the same time, this could render CUDA or 
OpenCL obsolete for a lot of types of applications, 
especially when visualization is involved that uses OpenGL 
anyway. In contrast to CUDA or OpenCL, OpenGL is much 
more compatible across devices and platforms, is not 
vendor-specific (at least in theory). It also does not 
introduce the huge toolset and runtime-library overhead 
that especially CUDA needs. In fact, besides a capable 
graphics driver, OpenGL needs no additional libraries or 
tools at all. 

Lately we started to develop some custom utility to make 
the shader development much faster: Our prototype 

 

Fig. 13: Final visualization of turning process 
simulation with vibrations. Workpiece dimensions 

100x100mm, 1400rpm, feed rate 0.14 mm/rev, tool 
radius 0.8mm, Vibrations at 91.93Hz amplitude 0.5µm, 

and 117.83Hz with amplitude 0.5µm (Effects have 
been exaggerated to be visible in the still image). 

 

 

Fig. 14: Visualization of synthetic vibration patterns as generated in our prototype application. 
Increasing number of amplitudes and vibrations from left to right. 
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application offers to (re)load shaders at runtime from files 
and at the same time automatically generates UI elements 
for the detected shader variables. This means that, as 
developers, we can exchange whole shaders, modify and 
add available parameters, and change their values on the 
fly without even stopping the application. Not to mention 
changing application code, re-building, re-starting and re-
simulating the stock model before seeing results of 
changed visualization parameters. Even the virtual camera 
can stay where it is, and changes are immediately visible. 
A major use case for those on-the-fly change of variables 
are switches which toggle different code paths in a shader 
program. This is, more or less, the only way to debug GPU 
shaders efficiently. The ability to adjust all this on the fly 
while visually inspecting the surface visualization safes 
hours of development time.  

The development currently is done on different hardware 
devices, specifically on NVIDIA Quadro P1000 and NVIDIA 
GFX 1060 graphics boards. Also, an Intel UHD 630 is used, 
but it caused some unexpected results because it does not 
always behave as defined, depending on driver versions (a 
well-known vendor-specific problem among OpenGL 
developers). 

Up to now we have not seen performance bottlenecks 
coming from those rather settled GPUs, although there is 
probably a lot of room for performance optimization in our 
prototypes. 

7 CONCLUSION 

We have shown different approaches to real time rendering 
of workpiece surface properties. Starting from plausible, 
manually controlled material visualization for a grinding 
process, we mixed in some more simulation-result 
controlled properties to differentiate surface properties by 
broaching tool teeth. In the last examples, we presented 
how we apply actual microscopic surface topography 
simulation results to our mesoscopic workpiece 
visualization. 

Up to now we focused on involving actual simulation results 
into our visualization approach. We might add more realistic 
looking, physically based material models to our 
visualization in the future, i.e., the Cook-Torrance 
reflectance model seems to be a good fit for metallic 
shading. This would mean that the base color to which we 
add our reflection effect would also look more metallic, even 
without the reflection effects. 

We showed that the combination of mesoscopic simulation 
results for a workpiece geometry with information about the 
microscopic surface properties can be utilized to visualize 
resulting surface quality. 
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