

MM Science Journal | www.mmscience.eu
ISSN 1803-1269 (Print) | ISSN 1805-0476 (Online)

Special Issue | HSM 2023
17th International Conference on High Speed

Machining

October 25-28, 2023, Nanjing, China

DOI: 10.17973/MMSJ.2023_11_2023112

MM SCIENCE JOURNAL I 2023 I Special Issue on HSM2023

6921

HSM2023-00049

IMPLEMENTING OF PHOTOREALISTIC SURFACE RENDERING IN CAM SIMULATION

T. Beer1, M. Stautner1,2, X. Beudaert3, M. Gil3, Z. Dombovari4, D. Plakhotnik1,5*
1ModuleWorks GmbH, Aachen, Germany

2Hochschule Ruhr West, Muehlheim, Germany

3IDEKO S Coop: Elgoibar, Spain

4Budapest University of Technology and Economics, Budapest, Hungary

5University of Twente, Enschede, the Netherlands

*Corresponding author; e-mail: denys@moduleworks.com

Abstract

In this paper, different approaches to visualize CAM simulation results are presented. Simulated
machined surfaces can be rendered in a photorealistic manner taking into account real tool motions and
vibrations measured during the machining process. The actual tool trajectories are used to derive the
microrelief of machined surface that lead to different reflective properties to be used in the CAM surface
rendering pipeline. Broaching and grinding were two machining processes to adopt this photorealistic
visualization. First, the generic CAM simulation computed the triangulated representation of the in-
process workpiece. Second, the triangles were enriched with the computed micro topography information
that is used by the developed shader implementation during the visualization process.

Keywords:

Computer Aided Manufacturing, CAM, Simulation, Grinding, Broaching, Visualization, Rendering,
Vibration, Digital Twin

1 INTRODUCTION

Nowadays, the manufacturing industry relies on the use of
CAM simulation and NC verification before actual
production. CAM simulation has proven to foresee and
prevent substantial failures during machining, such as
collisions and gouges between the tool and workpiece.
However, CAM simulation software cannot grasp on the
issues arising during the machining process. For instance,
chatter issues may result in severe deterioration of the
machined surface quality. Some machining processes, as
ball-end milling, generate rough surfaces even without any
chatter. Eventually, CAM users do request to include the
surface roughness simulation into CAM software, but such
a development is not trivial.

[Liu 2005] addressed the visual surface appearance of
parts machined by a rotating, multi-flute, ball nose milling
cutter. It was an attempt to consider the micro pattern
pertaining to the cutting action of individual cutter flutes.

[Bilalis 2009] also, like [Liu 2005] determined the machined
surface topography as a cloud of points retrieved from the
visualization system Z buffer to calculate surface
roughness. Different roughness metrics were calculated
from the simulated surface, and isolines of the surface

properties were depicted with different colors on the
surfaces.

[Wang 2016] simulated surface scallop topology after five-
axis milling. Simulation was performed microscale to
identify roughness properties. Then, the set of these
properties was assigned as a color code to the entire
surface machined during the operation.

[Klimant 2014] described a simulation method for NC
programs. They used real axis values from a real CNC to
simulate the milling process by means of a CAD kernel. The
resulted CAD geometry was used for virtual metrology. Part
visualization was the conventional CAD visualization with
the uniform color.

[Brecher 2017] presented an advanced virtual environment
to predict part shape distortions and combine them with the
surface quality measurement to show with different color
codes.

The objective of this paper is to explore several approaches
to define advanced visualization techniques suitable for
digital twins aiming to predict workpiece quality. At present,
most of the quality controls are performed after the part has
been manufactured, which can lead to rework operations,
thus increasing the cost of time and machines, or even
more importantly, a total refusal of the part if the defects are

MM SCIENCE JOURNAL I 2023 I Special Issue on HSM2023

6922

irrecoverable. With the quality oriented digital twins, the
problem of quality control must be addressed before and
during the manufacturing process. Existing metrics to
assess the surface quality are not enough to
comprehensively qualify the part, and in some cases the
part must be visually inspected by a naked eye to evaluate
the reflective properties of machined parts.

Multiple machining processes – broaching, cylindrical
grinding and, to some extend, turning – were considered for
implementing real time visualization of the metallic
reflectivity and the surface visual artifacts (grooves, etc.).

2 WORKPIECE DATA

The rendering approach we are going to present uses a
discrete, triangulated workpiece model as input. We create
it with a 3D removal simulation kernel that has the capability
to attach additional information to the workpiece surface
mesh. With this, we are able to distinguish surface areas
that have been machined with different tools from each
other. We will see later how this is utilized for the some of
the workpiece visualization techniques.

Most of the commercial CAM software use tri-dexel data
model [Benouamer 1997] that defines volumes in a discrete
manner. As shown in Fig. 1, a solid model can be
represented by several linear segments that are aligned to
X, Y, and Z axes. The tri-dexel model consists only the
linear segments, basically the end points of each segment.
Information at every point is enriched with additional
properties, like the surface normal and tool move number.
The surface of the solid model is not stored in the tri-dexel
grid (field). In order to be able to visualize the surface of the
part, an additional algorithm must reconstruct the local
surface patches between end points of dexels considering
their spatial coordinates and surface normal vectors at
these points.

The tri-dexel model is proven to curb memory consumption
in contrast to triangulated surface. During milling simulation,
the storage space is expected to grow relatively moderately
regardless the complexity of the simulated part. However,
this advantage is due to a trade-off, that some geometric
features, which are smaller that the distance between
neighbor dexels, may not be spotted by the simulation.

Fig. 1: Solid (semi-transparent) and tri-dexel models (red-
green-blue line segments)

3 REAL TIME RENDERING

The visualization techniques presented in this article are all
implemented in a real time rendering environment utilizing
C++ and OpenGL. In OpenGL version 4, the shader

pipeline looks like Fig. 2. Only the Vertex and Fragment
Stages must be programmed always. The other shaders
(round edged items in Fig. 2) are optional and the remaining
stages are only configurable, but not fully programmable.

A shader pipeline is very flexible and allows for a lot of
creativity and customizability. One caveat though is, that
due to this customization of shader code to a specific
application’s needs, it is usually not possible to reuse
shader code from a different application or from learning
resources directly. This is one reason why we do not use
third-party visualization or rendering toolkits. That way we
are more flexible and in full control of the pipeline and can
especially decide whether it makes more sense to modify
the input data structures (application side) or the shader
programs to realize new ideas.

Fig. 2: The OpenGL Rendering Pipeline.

Another downside of a programmable rendering pipeline is
that one must take care of literally everything. Not even
transformation of the input geometry or basic lighting
calculations are provided. It boils down to one basic
question that the rasterizer will pass on to the Fragment

MM SCIENCE JOURNAL I 2023 I Special Issue on HSM2023

6923

Shader in the last rendering stage: ‘should this fragment be
skipped or does it have a color, and if so, which’. From there
one needs to develop through the shader stages, in order
to gather and forward all the information needed at that last
pipeline stage, to answer that question. Performance-wise
it is best to calculate stuff as early in the pipeline as
possible, as every successive stage will potentially fan out
multiple operations for each single input value.

For the ease of understanding, we named the output data
in Fig. 2 ‘Pixel Data’. Though this is technically not exact,
the difference between a fragment and a pixel does not
matter for the contents of this article. A ‘fragment’ can be
thought of as a single pixel of the final image on the screen,
for now.

So, a lot of the basic steps, e.g., transformation and
perspective projection of the incoming workpiece geometry
according to the virtual camera position, and especially
lighting and shading, must be programmed explicitly. This
renders all the literature from the early ages of computer
graphics relevant again, because those things had been
hidden under the hood of graphics programming APIs and
GPU hardware for decades. Since the early ages of
computer graphics in the 1970s, technology has changed a
lot, but the math behind it has obviously not. Now those
resources are still very valid and surprisingly sufficient as a
starting point for modern shader programming.

We use the standard Phong reflection model [Phong 1975]
to calculate colors for the effect of light sources in the scene
(to be correct here, the simplification to directional light
sources we are using is also known as the Blinn-Phong
reflection model [Blinn 1977]). Basic lighting and material
appearance calculations are performed with this model.
This gives the ‘standard’ 3D real time rendering look as a
base for the following ‘add-on’ visual effects.

4 BROACHING

For the simulation of a broaching process, we have split the
broach tool into single teeth (Fig. 4). The cutting simulation
kernel then is driven with each tooth modeled as a different
tool. This gives us the opportunity to mock micro vibrations
by slightly modifying the tool path of each individual
tool/tooth. Although the resolution of the mesoscopic
simulation model is not high enough to provide accurate
microscopic surface properties from that, it does provide us
with the information about which tooth of the broaching tool
did remove material at which surface positions. From that
we can apply different visual properties to those areas.

The first implementation provided classical means to assign
material properties for intact surfaces along with
customized properties for surfaces created by each
individual tooth, as shown in Fig. 3. Here, the workpiece
surface basically appears colored by tooth, along with
standard lighting.

A next version of the visualization involves environmental
texture mapping to create a metallic reflective look (Fig. 3
(2) and (4)). The implementation uses the traditional
method as described in [Blinn 1976]. It is the same concept
that was used in the OpenGL fixed function pipeline. Now
that we have resembled this as GLSL shader code, we can
very easily add some modifications for more realism.

For recreation of the visual effect of different degrees of
surface roughness, we perturbate the workpiece surface
normal vectors (per fragment) which are used in that
reflection calculation. For that we use a concept that is
known as ‘Perlin noise’ [Perlin 1985], see Fig. 5. This type
of noise has properties that are substantial for that use

a) After first four teeth engaged, colored by the
tooth number

b) After four teeth engaged, with reflections

c) At the end of broaching, colored by the tooth
number

d) At the end of broaching, with reflections

Fig. 3: Visualization of the broaching simulation with
vibrations.

MM SCIENCE JOURNAL I 2023 I Special Issue on HSM2023

6924

case: ‘It provides a space filling signal that has an
impression of randomness while being controllable, with no
high or low spatial frequencies.’ This results in a smooth a
nd natural appearance. In fact, normal perturbation was one
of the original use cases for which Ken Perlin developed
that approach for application in the movie ‘Tron’ in 1982.
The idea of normal perturbation per fragment itself, as a
means to increase visual detail beyond the geometric data,
is even older and traces back to James Blinn in 1978 [Blinn
1978]. Of course, though the math behind the ideas have
not changed, the way those are actually implemented has

drastically changed.

Our Perlin noise signal is procedurally generated and

evaluated on the GPU on the fly, just for the required
surface points. We adopted the basic methods presented in
[Gustavson 2022] for our noise functions.

We want to create different appearances for smooth or
diffuse reflecting surface areas. This is achieved by
modulating the base frequency and amplitude of the noise
signal, depending on the material properties that are
assigned to the specific broaching tool tooth that has
touched that surface as last. For example, a perfectly
smooth surface will have perfect, crisp reflection properties.
This can be achieved by not applying any normal
perturbation but straightly reflecting in the direction of the
workpiece surface. For a smooth but slightly diffuse
appearance we increase the amplitude of the noise. For
rough appearance we increase amplitude and frequency.

Technically, we have implemented this by grouping the
workpiece triangles by tooth as we receive them from the
3D cutting simulation. Each group is assigned a separate
material which contains a base color along with other
parameters for the lighting calculations and for shaping the
noise signal. There is also a blending factor to control how
much of the lighting calculation results and how much of the
reflection calculation results contribute to the final fragment
color.

In the rendering loop we then process those groups
separately: The material parameters are transferred into
appropriate shader program variables, then the group of
triangles is rendered.

The resulting visualization will then appear with different
color/reflection properties depending on the broaching tool
tooth that was engaged on that surface point (Fig. 6).

Fig. 5: Typical Perlin Noise.

Fig. 4: Tree-shaped broaching tool.
Top: Edge profiles in interactive 2D plot.

Bottom: Generated 3D tooth shapes.

MM SCIENCE JOURNAL I 2023 I Special Issue on HSM2023

6925

Different surface colors correspond to different teeth that
cut the surfaces.

5 CYLINDRICAL GRINDING AND TURNING

Grinding or turning of rotation symmetrical parts has
basically a toolpath consisting of helical polylines. The

points of this polyline may not be exactly on that helix
because of the tool and workpiece vibrations. These
vibrations cause marks on the surface. Even though the 3D
simulation is not appropriate for visualization on the
microscopic level, the 3D simulation can still be used with
mesoscopic resolution, in order to generate plausible
visualization for quick evaluation of foreseen results, as
shown in Fig. 8 depicting how visually appealing rendering
can be achieved via applying different visual material
properties. In Fig. 8 and Fig. 8 the Perlin noise based
normal perturbation approach, as described in the previous
Broaching section of this article, has been applied. The
stronger grooves on the left side are simulated helix cuts
and are part of the mesoscopic material removal simulation
results. Different parts of the workpiece have been
simulated with different tools so that the workpiece model
contains different visual materials which can be modified
interactively. This approach delivered some appealing ‘eye
candy’ and plausible pictures for the results of a grinding
process. But for gaining insight into actual results of
simulated machining processes we now will involve more
specific information, in order to relate the visual effects to
the actual vibration phenomena we are simulating, instead
of applying only some controlled noise.

For the visualization of turning process results, we use
micro profiles which contain the surface topography errors
as axial profiles along discrete angles of the workpiece. The
application prototype allows to plot them as 2D graphs for
interactive inspection (Fig. 9). They are given as lists of
depth offsets perpendicular to the workpiece surface, along
the part, at different angular positions.

Fig. 8: Cylindric workpiece with surface visualization trying
to replicate effects of probing different grinding tools.

Fig. 6: Workpiece after broaching, with reflection
effects and colored by engaged tooth.

Fig. 7: Interactive material editor with parameters for
each simulated tool.

MM SCIENCE JOURNAL I 2023 I Special Issue on HSM2023

6926

The plot shows unitless error magnitude (Y axis), which can
be scaled respectively to calibration measurements or
visualization purposes, along the sampling points laying on
part’s rotary axis (X axis). In this example, there were 359
profiles (angular step 1.002786 degrees) with 1000 data
points each, covering a workpiece of 100mm. It depends on
the concrete profiles, how many are needed to have
enough data so that a special phenomenon becomes
visible. E.g. Nyquist-Shannon theorem gives an idea about
what order of magnitude of data points is needed to
represent certain features in general. Technically, any
number of data points and interpolated intermediate points
can be taken, as long as there are enough computational

Fig. 9: Exemplary axial surface profile plots with results from a simulated micro topography (at different profiles: all
profiles combined, 0 degrees, and 1.002786 degrees).

MM SCIENCE JOURNAL I 2023 I Special Issue on HSM2023

6927

resources. From this microscopic topography data, we want
to derive the resulting perturbation of the visual reflection
effects.

The first step is to create a height-field from those discrete
profiles. Basically, all discrete profiles are copied into one
big chunk of data. This height field is then uploaded to the
GPU, as real floating-point data, so that no information is
lost. Older GPU formats used to only allow image data
with clamped values in the range [0...1], which most of the
time also involved implicit bit-reduction. So now, with the
evolution of technology, no error-prone scaling of values
must happen in the shader computations. For direct
visualization of that height field, we still create a clamped
version of it (Fig. 10). From that we can interpolate height
offsets for each angular position on the workpiece surface
(unwrapped to tangent space). In Fig. 10 (bottom) this
map is directly mapped as red color onto the workpiece.
One can already see a slight interference pattern from
that, which is not easily visible in the 2D map.

Next step is the calculation of a normal map: From the
local surface angles along and between the discrete micro
profiles in the height map, we create 3D normal vectors.
That normal map does not actually exist, but the vectors
are calculated on the fly from the interpolated height filed
positions, where needed (Fig. 11). They are literally
derived in tangent space, as partial derivatives in axial and
angular direction, from the height field. This means that
we have no upfront limitation regarding the final normal
map resolution like we might have with pre-calculated
textures. Of course, the resolution of the original micro
profile data is still a limiting factor – but even with a low
count of discrete profiles we could apply different
interpolation and filtering strategies to improve quality as
compared to a pre-computed low resolution normal map.
In Fig. 12 we can see the difference that an interpolated
(right) vs non-interpolated (left) height field makes: There

are much more reflection details visible in the interpolated
version.

Fig. 12: Axial profiles combined into a 2D topography
map (top), mapped onto the workpiece (bottom).

,

Fig. 10: Low resolution workpiece (left), with per fragment derived normal vectors, visualized as RGB colors (right).

Fig. 11: Close-up of reflection details in grooves on the workpiece surface
without interpolated surface topography (left),
with interpolated surface topography (right).

MM SCIENCE JOURNAL I 2023 I Special Issue on HSM2023

6928

For each fragment, we want to determine the corresponding
surface properties. More precisely, we want to perturbate
the original workpiece surface normal with the
corresponding normal that we derived from the height map,
in tangent space. Because those two normal vectors are
defined in different spaces, we need to apply some
transformations so that we can relate them. The TBN
(Tangent Bitangent Normal) matrix defines that
transformation and is strictly speaking different for each
single surface point. We can construct the tangents from
the input geometry, as we assume a cylindrical workpiece.
For the more generic case, the input geometry would also
need to supply tangent vectors. From that we can combine
the TBN matrix and modulate the original workpiece surface
normal accordingly. It will then be perturbed according to
the surface topography described by the axial micro
profiles.

This normal then is used, as described before, in the usual
transform and lighting calculations for the base color, and
especially for the environmental texture map lookup which
creates the visual reflection effects).

We have used this method with synthetical data, which can
be generated directly in our prototype application (Fig. 14),
as well as from some more sophisticated simulation results
from one of our partners (Fig. 13).

6 REAL TIME RENDERING INFRASTRUCTURE

For the visualization parts of our prototype application, we
are using standard C++ and the OpenGL API directly, as
mentioned before. For the application user interface, we
utilize some small libraries: ‘Dear ImGui’ [ImGui] for the
user interface, ‘ImPlot’ [ImPlot] for graphs, e.g., of the micro
profiles, and of course the cutting simulation kernel, which
provides the triangle model of the visualized workpiece.

The prototype implementation uses plain OpenGL v4 with
GLSL shaders. We utilize Vertex Shaders, Fragment
Shaders, and (mainly for debugging purposes) also
Geometry Shaders.

OpenGL v4 also offers Compute Shaders in case we may
need them in the future. Compute Shaders basically allow
to execute shader programs on the GPU without also
throwing geometry at it which used to be the only way to
execute shader programs with former OpenGL versions.
With OpenGL v4 data formats used by shaders can be
selected much more arbitrary and are no longer limited to
geometry and image data types only. This not only applies
to Compute Shaders but to all Shader stages. Thus, it is no
longer necessary to dress up data as textures which
removes most burdens that used to be connected to using
graphics shaders for ‘general purpose’ (GPGPU)
applications. At the same time, this could render CUDA or
OpenCL obsolete for a lot of types of applications,
especially when visualization is involved that uses OpenGL
anyway. In contrast to CUDA or OpenCL, OpenGL is much
more compatible across devices and platforms, is not
vendor-specific (at least in theory). It also does not
introduce the huge toolset and runtime-library overhead
that especially CUDA needs. In fact, besides a capable
graphics driver, OpenGL needs no additional libraries or
tools at all.

Lately we started to develop some custom utility to make
the shader development much faster: Our prototype

Fig. 13: Final visualization of turning process
simulation with vibrations. Workpiece dimensions

100x100mm, 1400rpm, feed rate 0.14 mm/rev, tool
radius 0.8mm, Vibrations at 91.93Hz amplitude 0.5µm,

and 117.83Hz with amplitude 0.5µm (Effects have
been exaggerated to be visible in the still image).

Fig. 14: Visualization of synthetic vibration patterns as generated in our prototype application.
Increasing number of amplitudes and vibrations from left to right.

MM SCIENCE JOURNAL I 2023 I Special Issue on HSM2023

6929

application offers to (re)load shaders at runtime from files
and at the same time automatically generates UI elements
for the detected shader variables. This means that, as
developers, we can exchange whole shaders, modify and
add available parameters, and change their values on the
fly without even stopping the application. Not to mention
changing application code, re-building, re-starting and re-
simulating the stock model before seeing results of
changed visualization parameters. Even the virtual camera
can stay where it is, and changes are immediately visible.
A major use case for those on-the-fly change of variables
are switches which toggle different code paths in a shader
program. This is, more or less, the only way to debug GPU
shaders efficiently. The ability to adjust all this on the fly
while visually inspecting the surface visualization safes
hours of development time.

The development currently is done on different hardware
devices, specifically on NVIDIA Quadro P1000 and NVIDIA
GFX 1060 graphics boards. Also, an Intel UHD 630 is used,
but it caused some unexpected results because it does not
always behave as defined, depending on driver versions (a
well-known vendor-specific problem among OpenGL
developers).

Up to now we have not seen performance bottlenecks
coming from those rather settled GPUs, although there is
probably a lot of room for performance optimization in our
prototypes.

7 CONCLUSION

We have shown different approaches to real time rendering
of workpiece surface properties. Starting from plausible,
manually controlled material visualization for a grinding
process, we mixed in some more simulation-result
controlled properties to differentiate surface properties by
broaching tool teeth. In the last examples, we presented
how we apply actual microscopic surface topography
simulation results to our mesoscopic workpiece
visualization.

Up to now we focused on involving actual simulation results
into our visualization approach. We might add more realistic
looking, physically based material models to our
visualization in the future, i.e., the Cook-Torrance
reflectance model seems to be a good fit for metallic
shading. This would mean that the base color to which we
add our reflection effect would also look more metallic, even
without the reflection effects.

We showed that the combination of mesoscopic simulation
results for a workpiece geometry with information about the
microscopic surface properties can be utilized to visualize
resulting surface quality.

8 ACKNOWLEDGMENTS

This research was partially funded from the
European Union’s Horizon 2020 Research
and Innovation. Programme under the
project InterQ (grant agreement No.
958357), and it is an initiative of the

Factories-of-the-Future (FoF) Public Private Partnership.

9 REFERENCES

Paper in a journal:

[Bilalis 2009] Bilalis, N., Petousis, M., and Antoniadis, A.
“Model for Surface-Roughness Parameters Determination
in a Virtual Machine Shop Environment.” The International
Journal of Advanced Manufacturing Technology, The
International Journal of Advanced Manufacturing
Technology, 2009, 40 (11): 1137–1147.

[Blinn 1976] Blinn, J. F. and Newell, M. E., Texture and
reflection in computer generated images. Communications
of the ACM, 1976, Volume 19, Issue 10, pp 542-547

[Blinn 1978] Blinn, J. F., Simulation of wrinkled surfaces.
ACM SIGGRAPH Computer Graphics, 1978, Volume 12,
Issue 3, pp 286-292

[Brecher 2017] Brecher, C., Wellmann, F., and Epple, A.
“Quality-Predictive CAM Simulation for NC Milling.”
Procedia Manufacturing, Procedia Manufacturing, 2017,
11: 1519–1527.

[Gustavson 2022] Gustavson, S. and McEwan, I., Tiling
simplex noise and flow noise in two and three dimensions,
Journal of Computer Graphics Techniques, 2022, Volume
11, Issue 1, pp 17-33, ISSN 2331-7418

[Klimant 2014] Klimant, P., Witt, M., and Kuhl, M. “CAD
Kernel Based Simulation of Milling Processes.” Procedia
CIRP, Procedia CIRP, 2014, 17: 710–715.

[Liu 2005] Liu, N., Loftus, M., and Whitten, A. Surface finish
visualisation in high speed, ball nose milling applications.
International Journal of Machine Tools and Manufacture,
2005,45(10), 1152–1161

[Perlin 1985] Perlin, K., An image synthesizer. ACM
Siggraph Computer Graphics, 1985, Volume 19, Issue 3,
pp 287-296

[Phong 1975] Phong, B., Illumination for computer
generated pictures. Communications of the ACM, 1975,
Volume 18, Issue 6, pp 311-317

[Wang 2016] Wang P, Zhang S, Li Z, Li J. Tool path
planning and milling surface simulation for vehicle rear
bumper mold. Advances in Mechanical Engineering.
2016;8(3). doi:10.1177/1687814016641569

Paper in proceedings:

[Benouamer 1997] Benouamer, M. O. and Michelucci, D.,
“Bridging the gap between CSG and Brep via a triple ray
representation.” in Proceedings of the fourth ACM
symposium on Solid modeling and applications - SMA’97,
1997.

[Blinn 1977] Blinn, J., Models of light reflection for computer
synthesized pictures. In: Proceedings of the 4th annual
conference on Computer graphics and Interactive
techniques, July 20-22, 1977, San Jose, California: ACM
NY, pp. 192-198, ISBN 9781450373555

References to online resources:

[ImGui] Dear ImGui graphical user interface library,
https://github.com/ocornut/imgui

[ImPlot] ImPlot plotting library for ImGui,
https://github.com/epezent/implot

