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The aim of this work is to improve the inverse stamping method 
and increase its robustness. The first, crucial step of inverse 
stamping is the reduction of the three-dimensional part into a 
two-dimensional flat plane. There are several methods for 
reducing the dimension. These are geometrical methods, 
methods based on graph theory and stochastic methods. We 
examine the last two methods because of their reliability. These 
methods can even be used for geometrically complex structures 
which include holes, hooks and walls perpendicular to the flat 
plane. An algorithm which combines several methods for 
dimension reduction is proposed for use for a wide range of 
parts. Deep drawing is a widely used technology in the 
automotive industry and inverse stamping is a useful 
development tool.  
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1 INTRODUCTION  

Inverse stamping [Batoz 2004, Naceur 2004] is commonly used 
by engineers for many tasks. It can be used for designing 
technological processes and is also useful for designing stamped 
parts. Inverse stamping has three main steps. In the first step, 
the three-dimensional (3D) part is projected into a flat plane, i.e. 
the shape is reduced from three to two dimensions. The 
projected part is used as the initial input for the second step. 
Two dimensional (2D) finite element analysis (FEA) is used in this 
step for iterative improvement of the result of the first step. If 
the convergence criterion is fulfilled, i.e. the initial flat shape is 
known, the third step is completed and the results are evaluated 
based on the initial flat shape and the final 3D shape. For a 2D 
FEA plane stress problem [Zienkiewicz 2005] it is important that 
normal orientation of all the elements is the same and the area 
of all the elements is non-zero. Zero area elements are typical 
for parts which have walls perpendicularly oriented to the 
projection plane. Some geometrical approaches solve this issue 
using a step-by-step projection of the elements to the flat plane 
with subsequent connection. This algorithm is suitable for 
moderately smooth parts without holes. Different methods 
must be used for more geometrically complex parts.    

2 DIMENSION REDUCTION 

The first step of inverse stamping is dimension reduction. A 3D 
FEA mesh is reduced to a 2D mesh. Methods for this task are 
based on graph theory or the stochastic approach. These 
methods were originally developed, inter alia, for analysing 
multidimensional data and machine learning. The dimension is 
reduced during the analysis respecting the properties of the 

original data set. Dimension reduction methods are described in 
sections 2.1, 2.2, 2.3 and 2.4. 
 

 Locally Linear Embedding (LLE) 

In the first step of the LLE method, the specific number of the 
closest adjacent points (or nodes) is found and then a graph (a 
structure defined by a set of vertices and a set of edges) is 
compiled [Cada 2004]. The graph is represented by weight 
corresponding with the distance between adjacent points 
[Roweis 2000]. The weight matrix [W] is used for spatial 
reconstruction of the points with the reduced dimension. There 
are several methods of LLE. If the conventional method [Roweis 
2000] is used, then some weights can be zero, which leads to 
ambiguous solutions. Therefore, conventional LLE uses the 
following procedure: 

a) Weighted adjacency matrix [Z] [Cada 2004] for point i 
is assembled. 

b) Matrix [C] is calculated as [C]=[Z][Z]T. 
c) Diagonal of [C] matrix is modified by adding 

regularization term r, i.e. [S]=[C]+r[I], where [I] is 
identity matrix. 

d) Weights {w} are calculated as a solution of equation 
[S]{w}={i}, where {i} is column matrix of ones. 

e) Weights {w} of point i are added to global weight 
matrix [W] 

Due to the issue of choosing a regularization term r, the modified 
LLE (MLLE) [Zhang 2006] and Hessian LLE [Donoho 2003] were 
developed. LLE methods also include the Local Tangent Space 
Alignment (LTSA) method [Wang 2012, Hongyu 2005]. LTSA does 
not use the distances of adjacent nodes to represent local 
properties, but instead uses local tangent spaces. This is shown 
in Figure 1, where local tangent spaces are represented by solid 
lines and the original shape is represented by the dashed line. 
 

 
Figure 1. Local tangent spaces 
 
Determining the adjacent points (specifically their number) is 
difficult, especially if the part includes protrusions (e.g. a hook-
shaped substructure). A 3D mesh of a part with a protrusion (1) 
is shown in Figure 2.  
 

 
Figure 2. 3D mesh with hook-shaped protrusion 

(1) 
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The required 2D projection is shown in Figure 3. 

 
Figure 3. Required 2D projection  
 
Using the conventional LLE method with the number of adjacent 
points set to five, a significant deformation of the hook-shaped 
protrusion (2) occurs (see Figure 4).  
 

 
Figure 4. LLE with number of neighbouring points set to five  
 

Increasing the number of adjacent points to fifteen leads to the 
flipping (3) of the hook-shaped protrusion (see Figure 5). 
 

 
Figure 5. Flipping of the hook-shaped protrusion 
 

 Isomap 

The name of this method is derived from the phrase ‘isometric 
mapping’ [Tanenbaum 2000, Choi 2007]. The first step is the 
same as in the previous LLE method (the determination of the 
adjacent points). Then, the weighted adjacency matrix [M] is 
assembled. The geodesic distance between all pairs of points is 
calculated by using matrix [M] and the results are entered in to 
matrix [G]. With the help of the decomposition of [G] into 
eigenvalues and eigenvectors, the set of points in space is found 
(respecting the reduced dimension). 

 t-SNE 

The t-SNE [van der Maaten 2008] method is based on Stochastic 
Neighbour Embedding (SNE). The first step of SNE is determining 
the neighbouring points for the whole part and the following 

evaluation of their distances. This task is performed using an 
internal algorithm. The distances are used for assembling the 
asymmetrical probability matrix [P]. The element of [P] matrix pij 
reflects the probability that the point indexed by i is a neighbour 
of the point indexed by j. SNE uses Gaussian probability 
distribution. If the density of points is higher, then the standard 
deviation of Gaussian distribution is lower. In the next step, the 
initial guess in the space with the reduced dimension is randomly 
determined and a probability matrix with a constant standard 
deviation is assembled. The difference between both probability 
distributions is iteratively minimized. This increases the 
calculation time (compared with LLE methods and Isomap). t-
SNE uses Student’s distribution (also called t-distribution), 
instead of Gauss distribution and uses a symmetrical probability 
matrix [P]. 
 

 Spectral Embedding (SE) 

The first step of the SE approach [Belkin 2002] is the same as in 
the previous methods (the determination of the adjacent points 
and assembly of a graph). The edges of the graph are evaluated, 
while weights are stored in matrix [W]. Matrix [W] is used to 
calculate the Laplacian matrix [L] [Cada 2004]. If λi are 
eigenvalues of [L] in ascending order and {vi} are corresponding 
eigenvectors, then the rows of matrix [Y] in equation 1 are 
coordinates of points in space with dimension k. The total 
number of points is n. 

[𝑌] = [{𝑣2} … {𝑣𝑘+1}] ∈ ℝ𝑛×𝑘                    (1) 

3 INVERSE STAMPING ALGORITHM 

LLE methods, Isomap, t-SNE and SE allow the dimension to be 
reduced and the acquisition of the projected nodal coordinates. 
When the initial guess is known, the second and third steps can 
follow. The second step has the following substeps [Farahani 
2014], [Azizi 2008]: 

a) Each element is unfolded 
b) Nodal displacements {Δue} of each element are 

calculated as the difference between unfolded and 
projected nodal coordinates. Nodal forces are 
calculated. 

c) Global stiffness matrix [K] and external forces vector 
{F} are assembled. Increment of nodal displacements 
{Δu} are calculated as a solution of linear equations 
system [K]{Δu}=[F] 

d) Nodal coordinates are updated by adding {Δu} 
e) Material properties are updated 
f) After the convergence criterion is fulfilled, the second 

step is stopped. Otherwise, the algorithm goes to 
substep b).   

 

 
Figure 6. Elements unfolding 

 
Elements are unfolded in substep a) [Shirin 2014] . The 3D mesh 
(left) and its unfolded elements (right) are shown in Figure 6.  
The unfolded mesh is discontinuous. Node 5 in Figure 6 is a 
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member of the unfolded element (3) and is not coincident with 
node 5 of the unfolded element (4). The unfolded mesh is 
created by rotating the position vectors of its nodes by a specific 
angle (described in equation 2).  

    ∝= arccos⁡({𝑛}{𝑘})               (2)  

Symbol {n} denotes the normal vector of the 3D element and {k} 
is the normal vector of the target flat plane. The transformation 
matrix for unfolding is described in equation 3. 

    [𝑅] =

[

𝑚1
2𝜇 + 𝑐𝑜𝑠𝛼 𝑚1𝑚2𝜇 − 𝑚3𝑠𝑖𝑛𝛼 𝑚1𝑚3𝜇 + 𝑚2𝑠𝑖𝑛𝛼

𝑚1𝑚2𝜇 + 𝑚3𝑠𝑖𝑛𝛼 𝑚2
2𝜇 + 𝑐𝑜𝑠𝛼 𝑚2𝑚3𝜇 − 𝑚1𝑠𝑖𝑛𝛼

𝑚1𝑚3𝜇 − 𝑚2𝑠𝑖𝑛𝛼 𝑚2𝑚3𝜇 + 𝑚1𝑠𝑖𝑛𝛼 𝑚3
2𝜇 + 𝑐𝑜𝑠𝛼

], 

  (3) 

where μ, m1, m2 and m3 are described in equations 4 and 5. 
    𝜇 = 1 − 𝑐𝑜𝑠𝛼               (4) 

 

    [𝑚1 𝑚2 𝑚3]𝑇 =
1

‖{𝑛}×{𝑘}‖
{𝑛} × {𝑘}               (5) 

 
The centre of rotation of the element is equal to the geometric 
element centre. During substep c), the global stiffness matrix [K] 
and global vector of external forces {F} is assembled.  The 
stiffness matrix [Ke] of each planar triangular element is 
calculated first. Matrix [Ke] is given by equation 6. 

    [𝐾𝑒] = 𝑡𝐴[𝐵]𝑇[𝐷][𝐵],               (6) 

where t is element thickness, A is area of the element and the 
material stiffness matrix [D] is in equation 7. 
  

   [𝐷] =
𝐸(1+𝑎)

1+2𝑎
[
1 + 𝑎 𝑎 0

𝑎 1 + 𝑎 0
0 0 0.5

]               (7) 

Symbol a denotes normal anisotropy. If stress is zero, then E is 
Young’s modulus. If stress is non-zero, E is the ratio of the 
equivalent stress to the equivalent strain (see equation 8). 

    𝐸 =
�̅�

�̅�
               (8) 

Strain-displacement matrix [B] (used in equation 6) is in equation 
9. 

    [𝐵]𝑇 =
1

det⁡[𝐽]

[
 
 
 
 
 
𝑦2 − 𝑦3 0 𝑥3 − 𝑥2

0 𝑥3 − 𝑥2 𝑦2 − 𝑦3

𝑦3 − 𝑦1 0 𝑥1 − 𝑥3

0 𝑥1 − 𝑥3 𝑦3 − 𝑦1

𝑦1 − 𝑦2 0 𝑥2 − 𝑥1

0 𝑥2 − 𝑥1 𝑦1 − 𝑦2]
 
 
 
 
 

  ,             (9) 

where xi and yi for i=1, 2, 3 are current nodal coordinates in x-
direction and y-direction. The Jacobian matrix [J] is described in 
equation 10. 

    [𝐽] = [
𝑥1 − 𝑥3 𝑦1 − 𝑦3

𝑥2 − 𝑥3 𝑦2 − 𝑦3
]               (10) 

If [Ke] is known for each element, then the standard procedure 
for assembling [K] is used. External forces acting on each 
element are calculated according to equation 11. 

    {𝐹𝑒} = [𝐾𝑒]{Δ𝑢𝑒}               (11) 

The global external force vector {F} is assembled based on {Fe}. 
Material properties are updated in substep e). Material stiffness 
is given by the local stress-strain relationship (see equation 8). 
Equivalent strain and stress are calculated based on the 
difference between the 2D element and the 3D element. 
Equivalent strain [Farahani 2014] is calculated based on 
equation 12. 

    𝜀̅ = √
2

3
𝐹(𝐵𝜀𝑥𝑥

2 + 2𝜀𝑥𝑥𝜀𝑦𝑦 + 𝐶𝜀𝑥𝑥
2 + 2𝐷𝜀𝑥𝑦

2 ) ,           
  

(12) 

where constants F, B, C, D are described in equations 13-15.  

    𝐹 =
𝑎(2+𝑎)

1+2𝑎
   (13) 

 

    𝐵 = 𝐶 =
1+𝑎

𝑎
              (14) 

 

    𝐷 =
1

𝑎
              (15) 

Stress-strain curve is approximated based on equation 16. 
    �̅� = 𝑚𝜀̅𝑔               (16) 

Constants m and g in equation 16 were estimated based on 
measurement. Components of strain used in equation 12 are 
described in equation 17 

    [

𝜀𝑥𝑥

𝜀𝑦𝑦

𝜀𝑥𝑦

] = [

𝑙𝑛𝜆1𝑐𝑜𝑠2Θ + 𝑙𝑛𝜆2𝑠𝑖𝑛
2Θ

𝑙𝑛𝜆1𝑠𝑖𝑛
2Θ + 𝑙𝑛𝜆2𝑐𝑜𝑠2Θ

(𝑙𝑛𝜆1 − 𝑙𝑛𝜆2)𝑠𝑖𝑛Θ𝑐𝑜𝑠Θ

],               (17) 

where λ1, λ2 are given by equation 18. 

    [
𝜆1

𝜆2
] =

[
((1/2)(𝐶11 + 𝐶22) + (1/2)((𝐶11 − 𝐶22)

2 + 4𝐶12
2 )1/2)

−1/2

((1/2)(𝐶11 + 𝐶22) − (1/2)((𝐶11 − 𝐶22)
2 + 4𝐶12

2 )1/2)
−1/2

]             

  (18) 

Angle ϴ used in equation 17 is described in equation 19. 

    Θ = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝜆1

−2−𝐶11

𝐶12
)               (19) 

Elements of symmetric matrix [C], equation 23, are shown in 
equations 20-22. 

    𝐶11 =
1

(ℎ2𝑦ℎ3𝑥−ℎ2𝑥ℎ3𝑦)
2 (ℎ3𝑦

2 𝐿2 + ℎ2𝑦
2 𝐿3 − (𝐿2 +

𝐿3 − 𝐿1)ℎ2𝑦ℎ3𝑦)             
  (20) 

 

    𝐶22 =
1

(ℎ2𝑦ℎ3𝑥−ℎ2𝑥ℎ3𝑦)
2 (ℎ3𝑥

2 𝐿2 + ℎ2𝑥
2 𝐿3 − (𝐿2 +

𝐿3 − 𝐿1)ℎ2𝑥ℎ3𝑥)            
  (21) 

 

    𝐶12 =
1

(ℎ2𝑦ℎ3𝑥−ℎ2𝑥ℎ3𝑦)
2 (−ℎ3𝑥ℎ3𝑦𝐿2 −

ℎ2𝑥ℎ2𝑦𝐿3 + (1/2)(𝐿2 + 𝐿3 − 𝐿1)(ℎ2𝑦ℎ3𝑥 +

ℎ2𝑥ℎ3𝑦))             

  (22) 

 

    [𝐶] = [
𝐶11 𝐶12

𝐶12 𝐶22
]               (23) 

 
Vectors {h2} and {h3}, (used in equations 20, 21, 22) have the 
same orientation as the edges of the 3D element (see Figure 7) 
given by nodal coordinates xi, yi, zi.  
 

 
Figure 7. 2D and 3D elements 
L1, L2, L3 are the lengths of the 2D element edges given by nodal 
coordinates Xi, Yi. The third step of inverse stamping includes the 
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final evaluation of interesting values, specifically plastic strain, or 
residual stress. 

4 MODELLING THE STAMPED PARTS  

There are several ways to evaluate the stamped parts [Qattawi 
2014]. These differ in the degree of accuracy, the complexity of 
the model and the time required to calculate and prepare the 
model. It is possible to use a complex calculation in the 
appropriate solver of FEM software. Another option for 
calculation uses the simplified tools included in commercial 
programs, called “Inverse stamping”. Some open source 
software tools can be further customized. Another possibility is 
to develop a program which is completely or partially separate 
from the commercial program. 
 

 Utilization of the complex calculation in commercial FEM 
solvers 

The prediction of the behaviour of the formed part is 
conditioned by the knowledge of the shape of the forming tool. 
Then it is possible to calculate the resulting stress and the 
resulting deformation. Therefore, this method cannot be called 
“Inverse stamping”. When designing specific parts, the 
procedure is often reversed. The final shape of the part is known 
(based on the designed model) and the main task is to determine 
the initial shape (flat plane) of the part and the residual stresses, 
or relative deformation. This procedure is much more 
complicated, depending on the number of forming operations 
(or tools) that are necessary to obtain the final shape of the part. 
The time required to create the model depends on the shape 
complexity of the part, as well as the time required for the 
calculation itself. Compared with other variants used for 
predicting the behaviour of stamped parts, this method is one of 
the most time-consuming processes, but it provides highly 
accurate results. 

 

 Utilization of the simplified software tool – “NX Analyze 
Formability – One-step” 

Simplified tools can be used to predict the behaviour of a part in 
the early phase of the design process. These tools must meet 
time and accuracy requirements. They are usually called single-
purpose modules that are implemented in commercial 
modelling software. These modules either contain several 
commands or are based on the complete source code. Their 
main advantage is they can be used to perform a preliminary 
calculation of the stamped parts very simply and quickly. The 
main disadvantage of these tools is their rigidity, or inability to 
modify the source code, limited parameter options, or limited 
suitability for parts with shape diversity. A case study was done 
to demonstrate these positives and negatives.  

 
Figure 8. 3D mesh of the part before performing the simulation in the 
module "NX Analyze Formability - One-step" 
 

The module "NX Analyze Formability - One-step" was used for 
specific parts (see Figure 8 and Figure 9). The results show a 
significant deformation of the mesh that no longer meets the 
condition of mesh quality. These mesh errors occur for parts in 
which the normal of the stamped surface forms an angle greater 
than 90° to the base surface (unformed). 
 

 
Figure 9. 3D mesh of the stamped part after performing the simulation 
in the module "NX Analyze Formability - One-step" 

 
The applicability of the “NX Analyze Formability - One-step” 
module for a specific part (Figure 8 and Figure 9) is summarized 
below: 

 The tool is suitable for simplified analysis of stamped 
parts made of sheet metal with constant thickness, 
made of different materials. 

 This method uses the flat plane without intermediate 
steps (partial unforming and therefore the 
technological process (sequence of forming 
operations) is not included in the calculation. 

 Significant deformation, even destruction of the mesh 
elements, was determined for some parts. These 
elements did not meet the mesh quality requirements 
and the resulting stress, displacement and change in 
thickness was not correct for these parts. In this 
particular case this was due to the shape of the part, 
where the normal of the model surface is rotated by 
more than 90 ° relative to the normal of the unfolded 
surface. 
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 The condition of the minimum element size 
(depending on the sheet thickness) is very limiting. 

 Analysis of the spring-back of the part can only be 
performed using the partial unfolding process. The 
analysis of spring-back is not feasible without 
knowledge of the technological process, which is a 
significant limitation. 

 Analysis using the basic function of the module 
("Entire Uniform”) is fast. Its accuracy (resulting  
stress) depends on the suitability of the part for 
forming (mesh quality). 

 

 The creation of a separate algorithm 

Another option is to develop a standalone application, where the 
algorithm is completely or partially outside the commercial 
program. It allows a simplified calculation to be done, or to adapt 
it for a specific type of part. When creating a standalone 
algorithm for inverse stamping (or modifying an existing 
algorithm) it is necessary to choose a method for predicting the 
flat shape of the part. The following section deals with this issue. 

5 COMPARISON OF PROJECTION METHODS  

Projection methods applicable for dimension reduction were 
briefly described in sections 2.1, 2.2, 2.3, 2.4. The suitability of 
these methods was verified using two parts. Part A is a stabilizer 
clamp (see Figure 10), whose mesh includes 1154 nodes. 

 
Figure 10. Part A: Stabilizer clamp 
 
Part B is a belt tensioner lever arm (see Figure 11), whose mesh 
includes 4785 nodes. 

 
Figure 11. Part B: Lever arm 
 
Both parts were manufactured using stamping technology. They 
include holes and walls perpendicularly oriented to the 
projection plane. All the methods were tested with different 
settings. If all the mesh elements are oriented in the same 
direction (after completing the dimension reduction), then the 
method (including settings) is applicable. During the calculation 
the number of improving iterations in the second step of the 
inverse stamping procedure is monitored, as well as the 

computation time. The suitability of a method depends on the 
number of iterations. Each setting is verified three times and the 
average values are presented.   The Hessian LLE method needs 
at least six adjacent nodes if a two-dimensional reduced space is 
used. All the methods use from six to forty adjacent nodes.   

6 RESULTS AND DISCUSSION 

All the methods were successfully used for part A except the SE 
method. The conventional LLE method was not successful for 
many settings. Other methods were reliable with minor 
exceptions, see Figure 12. The t-SNE method is not dependent 
on the number of neighbouring nodes and the results are 
constant (in terms of this number).  

 
Figure 12. Number of turned elements, part A 
 

Results for part B are shown in Figure 13. Due to the more 
complex geometry, SE, conventional LLE and Isomap methods 
failed. Hessian LLE and LTSA methods allowed the calculation of 
an appropriate initial guess, but the number of adjacent nodes 
has to be lower than twenty. The MLLE method respects a range 
from ten to twenty.  

 

 
Figure 13. Number of turned elements, part B 
 

The calculation time of the inverse stamping algorithm is 
influenced by the rate of reduction of this method and by the 
number of improvement iterations in the second step. The 
longer calculation time for dimensional reduction is 
compensated by the lower number of the improvement 
iterations. The number of required iterations for part A is shown 
in Figure 14. Only applicable configurations were included. The 
best results were obtained using the Isomap method after seven 
iteration steps, followed by the t-SNE method with eight 
iteration steps. Other configurations are more time consuming 
in relation to the number of iteration steps. 
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Figure 14. Number of improvement iterations, part A 
 

The number of iteration steps for part B is shown in Figure 15. 
The best results were obtained by t-SNE after six iteration steps. 

 

 
Figure 15. Number of improvement iterations, part B 
 

Figure 16 describes the calculation time required for dimension 
reduction of part A. The projection time is usually shorter than 1 
second, except for t-SNE which is about 6 seconds.  

 

 
Figure 16. Calculation time, part A 
 

Calculation time of part B projection has a similar character. t-
SNE is more time consuming than the others (see Figure 17), but 
this method is preferred.  

 

 
Figure 17. Calculation time, part B 
 

The main reason for this is its high reliability and small number 
of required improvement iteration steps. The determination of 
the number of neighbouring nodes is not required by the t-SNE 
method, which means it is more user-friendly. A robust 
algorithm based on the presented data is proposed for 
dimension reduction. The algorithm includes the following 
methods: t-SNE, MLLE, Hessian LLE and LTSA.  

 
The algorithm has the following steps: 
 

a) t-SNE method is used. After reaching the same 
orientation of all elements, the algorithm ends. 

b) Number of neighbouring nodes is initialized to six, 
z=6. 

c) Method MLLE is used with parameter z. If all elements 
reach the same orientation, algorithm ends. 

d) Method Hessian LLE is used with parameter z. 
Algorithm ends if successful.  

e) LTSA method is used with parameter z. After reaching 
the same orientation of all elements, the algorithm 
ends. Otherwise, z is increased by one and algorithm 
goes to step c). 

The algorithm can be used for various shapes, from simple 
components to geometrically complex parts, including holes and 
perpendicular walls. Robustness of the algorithm is 
demonstrated in table 1, where there are results achieved with 
the proposed algorithm. The algorithm was successful in every 
case. If the amount of mesh nodes was too low, then t-SNE 
method failed and another method had to be used. For this 
reason the algorithm contains methods from LLE group.       

 

Number 
of mesh 
nodes 

used method 
(number of 

adjacent nodes) 

Calculation 
time [s] 

note 

75 MLLE(6) 0.57 t-SNE failed 

224 MLLE(6) 1.18 t-SNE failed 

480 MLLE(6) 2.49 t-SNE failed 

686 t-SNE() 3.83  

766 t-SNE() 3.70  

984 t-SNE() 4.82  

1154 t-SNE() 6.20  

4785 t-SNE() 26.34  

Table 1. Proposed algorithm results 
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7 CONCLUSIONS 

Several methods of dimension reduction were described, 
including the inverse stamping algorithm. Reduction methods 
were fully integrated into the inverse stamping process. All the 
methods were verified by comparing their important 
characteristics. Any reduction method can be used in inverse 
stamping if all the mesh elements are oriented in the same 
direction. This essential requirement was not fulfilled by the SE 
method for any settings. The Isomap method failed for 
geometrically complex parts. The conventional LLE method 
showed poor performance due to the limited setup options. 
Other methods from the LLE group achieved good results, as did 
the t-SNE method. The aim of this research was to increase the 
robustness of the inverse stamping method. Based on the 
presented study, an algorithm for dimension reduction was 
proposed. The algorithm includes t-SNE, MLLE, Hessian LLE and 
LTSA methods. This innovative solution can be utilized for a wide 
range of parts (including holes, hook-shaped protrusions, or 
walls perpendicular to the projection plane). The algorithm is 
characterised by high robustness.   
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