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ABSTRACT  
Investigating vibrations in mechanical transmission systems to 
detect and identify the causes of abnormal vibrations remains a 
prominent focus for researchers. Within industrial transmission 
systems, rolling bearings play a pivotal role. Utilizing the 
envelope spectrum of vibration signals to diagnose faults in 
rolling bearings proves highly reliable due to the bearings' 
mechanical properties. Under constant shaft rotational speed, 
most envelope analysis methods can accurately identify faults at 
the characteristic frequency of rolling bearings. However, 
numerous transmission systems operate at variable rotational 
speeds due to technological demands and load fluctuations. In 
such scenarios, the vibration signals of rolling bearings undergo 
frequency modulation, rendering conventional vibration analysis 
methods like envelope spectrum analysis ineffective. Time-
frequency analysis is a valuable diagnostic tool for identifying 
faults in rolling bearings under these conditions. Nonetheless, its 
practical application, particularly with large-scale data, 
necessitates high-performance computers capable of processing 
extensive multi-dimensional matrices. To overcome this 
challenge, this paper introduces a novel tool based on the 
Synchrosqueezing Transform (SST) and other resampling 
techniques. The proposed method additionally incorporates 
advanced techniques for extracting frequency curves from non-
stationary signals to detect the fault characteristic frequencies 
(FCFs) of rolling bearings. The effectiveness of this approach is 
showcased through both a simulated example and an 
experimental instance. Furthermore, a comprehensive 
comparison of the novel method with existing techniques is 
provided. 
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1  INTRODUCTION 

Detecting faults in industrial machine components is paramount, 

as even minor failures can cause significant production line 

downtime. Roller bearings, integral to industrial machinery, play 

a vital role in reducing friction and enabling motion from the 

rotation axis to the working components [1, 2]. Given their 

widespread use in mechanical systems, any single fault in a roller 

bearing can compromise operational performance and result in 

substantial economic losses [3]. Therefore, early fault 

diagnostics for roller bearings are vital maintenance activities. 

Typically, roller bearings suffer from two types of faults: 

synchronous worm and pitting on the working surface [4]. 

Synchronous worm increases the clearance between 

components like the inner race and the roller, degrading the 

bearing's quality and causing localized surface damage. Surface 

pitting, caused by load forces, creates pits on the bearing's 

working surface, reducing its load-carrying capacity and 

potentially leading to component failure. 

Condition monitoring of roller bearings through vibration signal 

measurements has long been a standard method for preventing 

such localized faults [5–8]. The Cepstrum, transforming signals 

from the time domain to the cepstral domain, is commonly used 

in bearing processing for analyzing structural and frequency-

related information [9, 10]. However, its limited resolution 

makes it unsuitable for complex signals with closely spaced 

frequency components. Spectrum analysis based on the Fourier 

transform is another method frequently used for diagnosing 

rolling bearing faults [11]. When a rolling bearing operates at a 

constant rotating speed and has a fault, its spectrum will exhibit 

fault characteristic frequencies (FCFs), indicating a fault if 

present and suggesting bearing health if absent [12]. 

Additionally, assessing detection performance relies on the 

signal-to-noise ratio (SNR) of the output [13–15]. The inequality 

of the output SNR forms the mathematical foundation for 

improving it, which is crucial for detecting non-stationary signals 

effectively. Various methods based on Kurtogram have also been 

developed to analyze the envelope spectrum [16–19]. The 

Kurtogram identifies regions of strong frequency intensity and 

analyzes the envelope spectrum within these regions to find 

FCFs. However, in cases where roller bearings operate at variable 

rotating speeds (non-stationary conditions), these regions are 

not clearly defined, even when the envelope spectrum is 

enhanced by a tunable Q-factor wavelet transform [20, 21]. This 

can cause the envelope spectrum to become blurred and 

overlapped, making it difficult to detect FCFs.  
Despite their efficiency, the methods mentioned above operate 
under the assumption of signal frequency stability over time, 
known as stationary signals. However, real-world signals 
frequently exhibit non-stationarity. Consequently, the utilization 
of time-frequency (TF) methods becomes essential. These 
methods enable observing and tracking frequency variations 
over time in the TF representation (TFR) domain, providing 
crucial insights for analyzing non-stationary signals, particularly 
in detecting FCFs in rolling bearings. One widely utilized 
approach is the Hilbert-Huang Transform (HHT), which is based 
on signal decomposition. The HHT dynamically breaks down a 
signal with multiple components into intrinsic mode functions 
(IMFs), containing instantaneous frequencies (IFs) crucial for 
signal analysis. However, the HHT method heavily relies on 
heuristic processes and lacks a robust mathematical foundation. 
The Empirical Mode Decomposition (EMD) technique is 
commonly employed to decompose a time series into its IMFs 
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[22, 23]. Extensions of EMD, such as Ensemble Empirical Mode 
Decomposition (EEMD) and Complete Ensemble Empirical Mode 
Decomposition (CEEMD), are adaptive, non-parametric 
algorithms. Despite their success, these methods still suffer from 
a lack of a solid theoretical foundation and high computational 
complexity. 

To address these challenges, alternative methods such as the 

Short-time Fourier Transform (STFT) [24, 25] and Wavelet 

Transform (WT) [26–28] have been proposed. However, they 

suffer from an inherent limitation due to Heisenberg's 

uncertainty principle, known as the TF resolution trade-off, 

which stipulates that one cannot localize a signal with arbitrary 

precision in both time and frequency. Many attempts have been 

made to circumvent this trade-off, among which the Wigner-

Ville distribution (WVD) is celebrated [29–31]. While the WVD 

belongs to quadratic TF methods, offering higher TF resolution, 

it suffers from interference terms and computational 

complexity. The Choi-Williams Distribution, another quadratic TF 

method, provides low noise levels but is underutilized due to its 

TF resolution trade-off [32, 33]. Considerable efforts have been 

made to address this TF resolution issue, including a general 

methodology called the reassignment method (RM) [34–36]. The 

RM effectively addresses the problem of TF concentration and 

interference, resulting in a more precise TFR by focusing the 

energy of a TFR towards ideal instantaneous frequency (IF) 

curves. However, the reassigned transform is non-invertible, 

limiting the exact reconstruction of modes from the TFR domain, 

which is crucial in many application domains. To overcome this 

limitation, Thakur and Wu proposed a phase-based technique 

called the Synchrosqueezing Transform (SST). The SST serves a 

similar purpose to RM, sharpening the TFR given by SFTF while 

enabling mode retrieval [37]. Extensive research and practical 

applications of various SST forms have been conducted in recent 

years in analyzing vibration data from rolling bearings [38–40]. 

However, conventional SST implementations become 

increasingly time-consuming for large datasets due to the need 

to calculate numerous large matrices and perform the STFT 

further increasing computational costs during the reconstruction 

of modes. 

This paper proposes a novel tool based on combined signal 

resampling [41] and advancements in the SST. The study aims to 

identify the FCF curve in non-stationary conditions of rolling 

bearing operations using large datasets. The proposed study 

contributes by modifying parameters to enable large-scale data 

processing with SST, separating time-varying frequencies, 

particularly those with overlapping occurrences. This research 

offers two key contributions: Firstly, it adapts parameters to 

enable efficient processing of large-scale data using the SST. This 

involves leveraging mathematical methodologies to segregate 

time-varying frequencies, particularly those with overlapping 

occurrences. In comparison with prior research, this study offers 

distinct advantages and innovations:  

 Development of a mathematical model for assessing FCFs in 

rolling bearings operating under non-stationary conditions.  

 Design and implementation of a digital signal processing tool 

for detecting FCFs in non-stationary conditions.  

 Introduction of a rapid diagnostic technique for identifying 

faults in rolling bearings across varied operational conditions.  

The subsequent sections of the paper are structured as follows: 

Section II provides a theoretical overview of the algorithms. 

Section III elaborates on the proposed diagnostic framework. 

Section IV demonstrates the effectiveness of the proposed 

framework through experimental results under both constant 

and non-stationary operational conditions. Finally, conclusions 

are drawn in section V. 

THEORETICAL BACKGROUND 

The dynamic model of the rolling bearing operated in non-
stationary.  

The FCF is directly proportional to the instantaneous rotational 

frequency, whether the system operates at a constant or 

variable speed. The Fault Characteristic Coefficient (FCC) is 

calculated by dividing the FCF by the shaft's rotational frequency 

(RF). The formula for determining the FCC for each type of fault 

is provided below [42] 

Inner race fault :  

 
𝐹𝐶𝐶𝑖 =

𝑍

2
(1 +

𝑑

𝐷
𝑐𝑜𝑠𝛽) (1) 

Outer race fault : 

 
𝐹𝐶𝐶𝑜 =

𝑍

2
(1 −

𝑑

𝐷
𝑐𝑜𝑠𝛽) 

(   

(2) 

where 𝑍 represents the number of rollers, 𝑑 is the roller 
diameter, 𝐷 is the pitch diameter, 𝛽 is the meshing angle. Under 
constant speed conditions, the model of the rolling bearing 
vibration signal is defined as follow [43] : 

𝑥(𝑡) = ∑  𝑁
𝑖=1 ℎ(𝑡 − 𝑖𝑇 − 𝜏𝑖)𝑞(𝑖𝑇)𝐴𝑖 + 𝑛(𝑡)         (3) 

where the signal 𝑥(𝑡) with background noise 𝑛(𝑡) has a 𝑁 
impulse. The signal’s response ℎ() is subject to a random sliding 
time error 𝜏𝑖 and a time interval 𝑇 between successive impulses. 
Amplitude modulation 𝑞(𝑖𝑇)  influenced by load distribution, 
results in amplitude variability 𝐴𝑖. Under varying speed 
conditions, the interval 𝑇 also fluctuates between successive 
impulses. Therefore, the model for the rolling bearing vibration 
signal under varying speeds is given by [43]:  

𝑥(𝑡) = ∑  𝑁
𝑖=1 ℎ(𝑡 − 𝑇𝑖 − 𝜏𝑖)𝑞(𝑇𝑖)𝐴𝑖 + 𝑛(𝑡)            (4) 

where the i-th impulse appears at the time 𝑇𝑖. The rotational 
frequency 𝑓𝑟(𝑡) and 𝑇𝑖  have a relationship with the number of 
rolling bearing revolutions expressed by: 

∫  
𝑇𝑖
0
𝑓𝑟(𝑡)𝑑𝑡 =

𝑖

𝐹𝐶𝐶
, 𝑖 = 1,2,⋯ ,𝑁                              (5) 

The FCF can be determined in a particular range by: 

Inner race fault: 

             𝐹𝐶𝐶𝑖 ∗ 𝑚𝑖𝑛(𝑓𝑟(𝑡)) ≤ 𝐹𝐶𝐹𝑖 ≤ 𝐹𝐶𝐶𝑖 ∗ 𝑚𝑎𝑥 (𝑓𝑟(𝑡))      (6) 

Outer race fault: 

            𝐹𝐶𝐶𝑜 ∗ 𝑚𝑖𝑛(𝑓𝑟(𝑡)) ≤ 𝐹𝐶𝐹𝑜 ≤ 𝐹𝐶𝐶𝑜 ∗ 𝑚𝑎𝑥 (𝑓𝑟(𝑡))     (7) 

Novel tool construction to process large-scale data. 

The resampling synchrosqueezing (RSS) can transform a large-

scale vibration signal to time-frequency representation quickly 

by changing resolution appropriately. The RSS method performs 

STFT with a sliding step in the time domain. This means that a 

higher downsampling factor results in more time information 

being lost. However, in bearing vibration diagnosis, the crucial 

aspect is the frequency information for detecting faults. 

Therefore, downsampling the time samples has minimal impact 

as long as TFR remains clear and unblurred. First, the formula to 

perform STFT of x(t) is given by [24]: 
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𝑆𝑥
𝑔
(𝜏, 𝑓) = ∫𝑥(𝑡)𝑔(𝑡 − 𝜏)𝑒−𝑗𝑓(𝑡−𝜏)𝑑𝑡                     (8) 

where 𝑔(𝑡) = (𝜋𝜎2)−1/4𝑒−𝑡
2/2𝜎2, which is the sliding window 

Gaussian. In the discrete form, formula 𝑆𝑥𝑔(𝜏, 𝑓) = ∫ 𝑥(𝑡)𝑔(𝑡 −

𝜏)𝑒−𝑗𝑓(𝑡−𝜏)𝑑𝑡                     (8) can be presented: 

           𝑆𝑥
𝑔
[𝑚, 𝑘] = ∑ 𝑥[𝑛]𝑔[𝑛 − 𝑚𝐻𝑡]e

−j2𝜋𝑘(𝑛−𝑚𝐻𝑡)/𝑁𝑓
𝑛∈ℤ     (9) 

where the window 𝑔[𝑛] has slide step 𝐻𝑡. A sliding step 𝐻𝑡 is a 

resampling factor. The larger 𝐻𝑡, the less computational cost. Set 

the length of 𝑔[𝑛] to 𝑁𝑓 to remain efficient, the discrete STFT 

value is calculated by the formula: 

𝑆𝑥
𝑔[𝑚, 𝑘] = ej2𝜋𝑘𝑀/𝑁𝑓 ∑  

𝑁𝑓−1

𝑛=0

𝑥[𝑛 +𝑚𝐻𝑡 −𝑀]𝑔[𝑛 −𝑀]e
−
j2𝜋𝑘𝑛

𝑁𝑓  

                                                                                                          (10) 

with window 𝑔[𝑛] Gaussian resampled from 𝑔(𝑡). Similarly, we 

can calculate the value 𝑆𝑥
𝑔′
[𝑚, 𝑘] with window 𝑔′[𝑛] resampled 

from formula 𝑔′(𝑡) = −(𝜋𝜎2)−
1

4e−
𝑡2

2𝜎2 ⋅
𝑡

𝜎2
 by the formula:   

𝑆𝑥
𝑔′[𝑚, 𝑘] = ej2𝜋𝑘𝑀/𝑁𝑓 ∑  

𝑁𝑓−1

𝑛=0 𝑥[𝑛 + 𝑚𝐻𝑡 −𝑀]𝑔
′[𝑛 − 𝑀]e

−
j2𝜋𝑘𝑛

𝑁𝑓  

                                                                                                         (11) 

Then, the angular frequency range in discrete TFR can be 

expressed as: 

Δω = 2𝜋Δ𝑓 = 2𝜋𝑓𝑠/𝑁𝑓                                 (12) 

and ω[𝑘] = 𝑘Δω is a series of discrete angular frequencies, 𝑘 =

0,1… ,𝑁 − 1. Then, the function estimates the angular velocity 

discrete  Ω̂[𝑚, 𝑘] for signal 𝑥[𝑛] is calculated by: 

Ω̂[𝑚, 𝑘] = |ω[𝑘] − 𝑗
𝑆𝑥
𝑔′
[𝑚,𝑘]

𝑆𝑥
𝑔
[𝑚,𝑘]

| ,  𝑆𝑥
𝑔
[𝑚, 𝑘] > 𝛾            (13) 

where 𝛾 denotes the threshold. Finally, the RSS coefficient is 

determined by: 

𝑅𝑥[𝑚, 𝑙] = ∑  𝑘∣Ω̂[𝑚,𝑘]−ω[𝑙]≤Δω/2 𝑆𝑥
𝑔
[𝑛, 𝑘]                   (14) 

Fault Characticties Frequency curve extraction 

The bearing fault diagnosis aims to extract fault frequency curves 

from the TFR. Assuming that the widest frequency range of the 

frequency peak curve (FPC) 𝑓𝑝(𝑡) is [𝑓−(𝑡), 𝑓+(𝑡)], the FPC is 

determined by: 

𝑓𝑝(𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑓∈[𝑓−(𝑡),𝑓+(𝑡)]

|𝑅𝑥(𝑚, 𝑙)|                                 (15) 

By considering that the extracted frequency is unimodal 𝑠(𝑡)  =

 𝐴 𝑐𝑜𝑠(2𝜋𝑓𝑡 +  𝜙), signal amplitude and phase can be 

synthesized from 𝑅𝑥(𝑚, 𝑙): 

𝐴𝑒𝑖(𝑣𝑡+𝜙) = 2𝑅𝑥(𝑚, 𝑙)/�̂�(𝑛 − 𝑀)                         (16) 

where  �̂�[𝑛] is the Fourier formation of 𝑔[𝑛]. extending this 
approach to any AM/FM component enables the reconstruction 
of the ridges using formulas: 

𝑓(𝑡) = 𝑓𝑝(𝑡), 𝜙(𝑡) = arg [𝑅𝑥(𝑓𝑝(𝑡), 𝑡)]                  (17) 

PROPOSAL METHOD FOR FAULT DIAGNOSTIC 

The Fast-Resampling Synchrosqueezing Curve Extraction (RSCE) 

scheme integrates several advanced methods to process 

vibration signals efficiently. The RSCE executes RSS to reduce 

data size in time domain and remain frequency information. 

Moreover, the RSCE applies frequency selection to minimize 

searching range, leading to reduce computational cost. In 

addition, frequency curve extraction is performed quickly with 

calculated reference curves. The proposed scheme is illustrated 

in Fig. 1. 

 Step 1 (Low-Pass Filtering): Apply a low-pass filter to the 

vibration signal 𝑥(𝑡) with a chosen cutoff frequency 𝑓+. This step 

reduces computational costs by focusing on a smaller data 

range. 

 Step 2 (RSS Execution): Perform RSS to obtain the time-

frequency representation (TFR), which may include the 

rotational frequency 𝑓𝑟. 

 Step 3 (Frequency Curve Extraction): Extract the frequency 

c

u

r

v

e

 

𝑓𝑟 into a vector using the Equation 𝑓𝑡=𝑓𝑝𝑡, 
𝜙(𝑡) = arg [𝑅𝑥(𝑓𝑝(𝑡), 𝑡)]                  (17). Calculate the standard 

deviation of the derivative (𝐷𝑠𝑡𝑑) of 𝑓𝑟  to evaluate the 

smoothness of the frequency curve. A high 𝐷𝑠𝑡𝑑 value indicates 

a significant extraction error. The Dstd value is computed in 

MATLAB using the formula: 

              𝐷𝑠𝑡𝑑 =
𝑠𝑡𝑑(𝑑𝑖𝑓𝑓(𝑓𝑟[𝑘]))

max(𝑓𝑟)
                               (18) 

 If 𝐷𝑠𝑡𝑑 is larger than 0.02, the extraction curve is not smooth or 

the chosen 𝑓+ may have excluded the rotational frequency from 

the TFR. In this case, increase 𝑓+ by 1.5 times and repeat Step 1.  

 If multiple 𝑓𝑟  extracted, the true 𝑓𝑟  is the lowest frequency with 

the highest local amplitude.  

Once 𝑓𝑟  is correctly identified, proceed to the next step 

 

Fig. 1. Proposed RSCE processing scheme 

 Step 4 (FCF Range Selection): With the extracted 𝑓𝑟, determine 

the FCF ranges using Equations (6) and (7). This step also reduces 

computational costs by narrowing the extraction range. The 

estimated fault frequency curves are calculated using 𝑓𝑟 ∗ 𝐹𝐶𝐶. 

 Step 5 (Envelope Transformation): Convert the vibration signal 

𝑥(𝑡) into its envelope form.  
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 Step 6 (RSS Execution): Perform RSS to obtain the TFR of the 

envelope signal.  

Step 7 (FCF Line Extraction): Within the FCF ranges identified in 

Step 4, extract the FCF lines. The FCF curves 𝑓𝐹𝐶𝐹𝑖  and 𝑓𝐹𝑐𝐹𝑜  are 

then extracted in Step 3. 

Step 8 (Error Calculation): Compute the error between the 

extracted and estimated curves using the mean square error 

formula: 

𝐸𝑟𝑟𝑜𝑟 =
𝑚𝑒𝑎𝑛(|𝑓𝐹𝐶𝐹[𝑘]−𝐹𝐶𝐶.𝑓𝑟[𝑘]|)

𝑚𝑒𝑎𝑛(𝑓𝐹𝐶𝐹[𝑘])
∗ 100%                 (19) 

If the 𝐸𝑟𝑟𝑜𝑟 is less than 10%, the extracted curves 𝑓𝐹𝐶𝐹  are 

accurate, indicating an inner or outer bearing fault. Otherwise, 

the bearing is normal. 

RESULTS 

The computations were performed on a computer with the 

following specifications : an Intel Core i5-8300H CPU @ 2.3GHz, 

16GB of RAM, running Windows 10 OS, and using Matlab 2020b. 

Simulation test 

The simulation signal is designed to be as complex as a real 

vibration signal, featuring varying frequencies over time and 

sidebands around the main characteristic frequency. The 

formula for the simulation signal is: 

               𝑥 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5                        (20) 

where 

{
 
 

 
 

𝑥1 = 9sin(2𝜋(10 + 40 ∗ sin(2𝜋𝑡)) ∗ 𝑡)

𝑥2 = 3 sin(2𝜋(10 + 30 + 40 ∗ sin(2𝜋𝑡)) ∗ 𝑡)

𝑥3 = 3sin (2𝜋(10 − 30 + 40 ∗ sin(2𝜋𝑡)) ∗ 𝑡)

𝑥4 = sin(2𝜋(10 + 60 + 40 ∗ sin(2𝜋𝑡)) ∗ 𝑡)

𝑥5 = sin (2𝜋(10 − 60 + 40 ∗ sin(2𝜋𝑡)) ∗ 𝑡)

    (21) 

The sidebands are evenly spaced at intervals of 30 Hz. The 

amplitude of the central signal is three times that of the nearest 

sidebands and nine times that of the next set of sidebands. The 

simulation signal is sampled at 4096 Hz and has white noise 

added, with a signal-to-noise ratio (SNR) of 25 dB. 

Table 1 compares the results of the proposed algorithm across 
different resolution scenarios. The table shows that Case 1 
achieves the highest resolution, with the value of fast Fourier 
transforms (𝑛𝐹𝐹𝑇) of 16,384 and a step size of 1, indicating no 
resampling was applied. In contrast, resampling with a step size 
of 10 significantly improves calculation speed in Cases 2, 3, and 
4. However, excessive resampling, as seen in Case 5, results in 
substantial data loss and a large 𝐷𝑠𝑡𝑑 error in the extracted 
curve. When comparing Cases 3 and 4, reducing the overlap ratio 
decreases computational costs but increases the 𝐷𝑠𝑡𝑑 error, 
indicating the loss of crucial data. Consequently, Case 3, with an 
𝑛𝐹𝐹𝑇 ratio matching the rotational frequency, an overlap ratio 
of 0.8, and a step size of 10, exhibits the lowest error. The RSCE 
processing results with parameters from Case 3 are illustrated in 
Fig. 2. This demonstrates that the proposed method can produce 
clear images and smooth extraction curves when the parameters 
are optimally set. 

Table 1. Simulation test results  

 Case 

 1 2 3 4 5 

Step 1 10 10 10 40 

 𝒏𝑭𝑭𝑻 16384 16384 4096 4096 4096 

Overlap ratio 0.8 0.8 0.8 0.75 0.85 

Elapsed time (s) 32.57 7.93 5.263 4.152 4.015 

 𝑫𝒔𝒕𝒅 0.016 0.013 0.011 0.019 0.331 

 𝒏𝑭𝑭𝑻/𝒇𝒔 4 4 1 1 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) The TFR of the simulation signal after applying RSS and (b) 

its extracted frequency curves 

Experiment test  

The experimental setup for testing bearing health conditions 

involves the use of a SpectraQuest machinery fault simulator 

(MFS-PK5M) [44]. Fig. 3 illustrates the configuration. A motor 

drives the shaft, with its rotational speed controlled by an AC 

drive. Two ER16K ball bearings are installed to support the shaft. 

The bearing specifications are provided in Table 2. The left 

bearing represents a healthy state, while the right bearing is the 

experimental bearing, which is replaced with bearings exhibiting 

three different conditions. An ICP accelerometer (model 

623C01) is positioned on the housing of the experimental 

bearing to collect vibration data. Additionally, an incremental 

encoder is used to measure the shaft's rotating speed precisely. 

The fluctuations in shaft velocity are detailed in Table 2. 

Table 2. Bearing specifications. 

Bearing type ER16K 

Pitch diameter 38.52 

Ball diameter 7.94 

Number of balls 9 

Joint angle 0 

FCCI 5.43 

FCCO 3.57 

Now, we examine a bearing vibration signal with an inner race 

fault to demonstrate the effectiveness of the proposed method. 

The shaft rotation frequency of the data increases from 14.5 Hz 

to 21.3 Hz. Fig. 4 illustrates the waveform of the vibration signal, 

showing that the vibration amplitude increases with speed. 

These closely spaced amplitude peaks make it challenging to 

identify bearing faults using only the time domain signal. 

The Kurtogram of the envelope signal in  Fig. 5 indicates the 

highest magnitude at level 3, with a center frequency of 3125 Hz 

and a bandwidth of 1250 Hz. By converting this area to the 

a) 

b) 
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frequency domain, the envelope spectrum shown in Fig. 6 is 

obtained.  

 

Fig. 3. The bearing test rig. 

 

Fig. 4. The vibration signal waveform 

However, the spectrum appears blurred in Fig. 6, indicating that 

the varying speed causes overlapping, making it extremely 

difficult to identify the fault characteristic frequencies (FCFs). 

Therefore, addressing the effects of varying speed is crucial. 

 

Fig. 5. Kurtogram of the envelope signal 

 

Fig. 6. Envelope spectrum of the vibration signal. 

Fig. 7 presents the results of Steps 2 and 3, with the selected 

frequency 𝑓+ at 45 Hz and a time-lapse of 3.47 seconds. The 

frequency curves in the TFR transformed by RSS do not overlap, 

effectively addressing the varying speed issue. In Fig. 7b, the 

standard deviation of the derivative of the extracted rotational 

frequency curve is 0.013. Since the true rotational frequency is 

lower than the selected 𝑓+, the extracted rotational frequency 

can be easily detected with this small Dstd value. If the true 

rotational frequency is higher than the selected 𝑓+, the extracted 

frequency follows an incorrect path, resulting in a high Dstd 

value. In such cases, 𝑓+ needs to be increased, and the process 

restarted at Step 1. Therefore, although the frequency curve 

extraction step may take more time, the typically low range of 

rotational speed results in only a slight increase in computational 

cost. Fig. 8, similar to Fig. 7, shows the results of Steps 2 and 3 

with the signal transformed by FSST. Compared to RSS, FSST 

provides a higher TFR resolution. However, the extracted curve 

is less smooth, with a Dstd value of 0.025, and the time lapse for 

FSST is significantly higher at 27.82 seconds. Consequently, RSS 

demonstrates better performance than FSST. Fig. 9 compares 

the difference between the extracted and measured rotational 

frequencies, which are included in the experimental dataset. The 

frequency curves of both signals closely align, indicating that the 

extracted results are reliable for estimating FCF in the next step. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (a) The TFR of the vibration signal after applying RSS and (b) its 
extracted frequency curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. (a) The TFR of the vibration signal after applying FSST and (b) its 
extracted frequency curve. 

Fig. 10 and Fig. 11 display the processing results for the inner 
race and outer race fault frequency ranges, respectively, as 
described in Steps 6 and 7. Qualitatively, the extracted frequency 
curve in Fig. 10b accurately matches the TFR in Fig. 10a and 
closely resembles the estimated inner race fault frequency 

a) 

b) 

a) 

b) 
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curve. However, due to the highest energy frequency curve 
being truncated by the selected frequency in Step 4, the 
extracted frequency curve in Fig. 11b appears irregular and 
differs from its TFR 

 

Fig. 9. Validate the extracted rotational frequency. 

Step 7 results indicate that the inner race FCF curve is within the 

expected frequency range from the literature, while the outer 

race FCF curve is not. Quantitatively, the diagnostic error for the 

inner race fault is 2.58% according to the formula in Step 8, 

whereas the outer race fault shows a diagnostic error of 38.34%. 

Thus, it can be concluded that the bearing has only an inner race 

fault, which aligns with the experimental setup. Similarly, the 

diagnostic error for the inner race fault is high with a damaged 

outer ring bearing, whereas the diagnostic error for the outer 

race fault is low. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. (a) The TFR of the inner race bearing fault frequency range is 
transformed by RSS, and (b) its frequency curve is extracted. 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. (a) The TFR of the outer race bearing fault frequency range 

transformed by RSS and (b) its extracted frequency curve. 

For further evaluation, let's consider the existing bearing fault 

diagnosis approach, which involves conducting FSST and 

extracting frequency curves, significantly contributing to 

computational overhead. The current method processes all 

frequency ranges to extract these curves. In contrast, our 

proposed approach employs a resampling technique to reduce 

computational costs 𝐻𝑡 and selectively chooses frequency 

ranges to avoid processing extensive datasets.  

Table 3 provides a detailed comparison of processing outcomes 

between the novel and existing schemes when analyzing 

experimental data, comprising three cases for each condition. 

Both schemes accurately diagnose the condition of the bearing. 

The findings demonstrate that our novel approach substantially 

diminishes computational expenses across three types of 

bearing faults, rendering it suitable for large-scale data 

applications. 

Table 3. Compare the computational cost of the old and the novel 
scheme to conclude the gear condition. 

Conditions 
Elapsed time (s) 

The old scheme The novel scheme 

Inner race fault 

116.83 

114.82 

122.93 

18.57 

17.48 

19.04 

Outer race fault 

113.49 

117.15 

114.28 

17.96 

18.44 

18.09 

Normal 

153.61 

141.52 

150.28 

25.46 

22.36 

24.81 

CONCLUSION 

In the era of Industry 4.0, machinery frequently operates under 

varying loads and rotational speed conditions. Damage to a 

component within the machinery can significantly impact its 

quality and efficiency. Diagnosing faults in machine components 

using externally measured vibration signals has been a focus of 

research for decades. However, these vibration signals often 

entail large-scale data, necessitating digital signal processing 

tools that demand high-performance computing. This can 

sometimes result in computer freezes, crashes, and memory 

overflows. To tackle this issue, this paper introduces a novel 

approach involving resampling the signal with the 

Synchrosqueezing Transform (SST) to develop a rapid signal 

processing tool that enhances frequency resolution in the Time-

Frequency Representation (TFR). With improved frequency 

resolution, extracting frequency components to identify 

rotational frequency and Fault Characteristic Frequencies (FCFs) 

via local maxima methods becomes more straightforward. 

Simulation and experimental tests have validated this approach, 

showing promising results. Furthermore, the proposed method 

has been compared with existing methods, demonstrating faster 

processing speeds without compromising diagnostic accuracy. 

This paper holds practical significance as it enables the 

a) 

b) 

a) 

b) 
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processing of large datasets using low-configuration computers 

and proposes a rapid diagnostic procedure for rolling bearing 

faults applicable to both stable and unstable rotational speeds. 
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