

MM Science Journal | www.mmscience.eu
ISSN 1803-1269 (Print) | ISSN 1805-0476 (On-line)

Special Issue | TEAM 2024
Transdisciplinary and Emerging Approaches to Multidisciplinary Science

11.9.2024 – 13.9.2024, Ostrava, Czech Republic

DOI: 10.17973/MMSJ.2024_12_2024125

MM SCIENCE JOURNAL I 2024 I DECEMBER

7903

TEAM2024-00038

GAUSSIAN TRANSFER FUNCTIONS BASED BINARY PARTICLE SWARM
OPTIMIZATION FOR ENHANCED PERFORMANCE IN UN-CAPACITATED FACILITY

LOCATION PROBLEM
Kanak Kalita 1,2, *, Lenka Cepova 3, Pradeep Jangir 4,5,6,7

1 Department of Mechanical Engineering, Vel Tech Rangarajan Dr, Sagunthala R&D Institute of Science and

Technology, Avadi 600062, India. drkanakkalita@veltech.edu.in.

2 Jadara Research Center, Jadara University, Irbid 21110, Jordan.

3 Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-

Technical University of Ostrava, 70800 Ostrava, Czech Republic. lenka.cepova@vsb.cz.

4 Department of Biosciences, Saveetha School of Engineering. Saveetha Institute of Medical and Technical

Sciences, Chennai 602105, India. pkjmtech@gmail.com.

5 University Centre for Research and Development, Chandigarh University, Mohali 140413, India.

6 Department of CSE, Graphic Era Hill University. Graphic Era Deemed to Be University, Dehradun 248002, India.

7 Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan.

*Corresponding author; e-mail: drkanakkalita@veltech.edu.in

Abstract

This study introduces Gaussian Binary Particle Swarm Optimization (G-BPSO), designed to address
binary optimization challenges effectively. G-BPSO employs new transfer functions of the Gaussian type
derived from the power functions to enable mapping of real-valued vectors of individual encodings into
binary form. This ensures smooth change between steps and improved convergence. To assess the
effectiveness of G-BPSO, a host of complex optimization problems such as the un-capacitated facility
location problem are investigated. Enhanced efficiency and improvement over existing methods in binary
optimization is observed. The MATLAB code of G-BPSO is made open-access through
https://github.com/kanak02/GBPSO.

Keywords:

Evolutionary algorithm, Particle swarm optimization, Gaussian shaped, Transfer function, Optimization,
Discrete optimization

1 INTRODUCTION

Binary integer optimization challenges are a type of
combinatorial optimization problems namely binary
optimization problems (BOPs) which includes problems like
0-1 knapsack problem (0–1KP) [Abdel-Basset 2024], un-
capacitated facility location problem (UFLP) [Ozsoydan
2024], maximum coverage problem (MCP) [Baldomero-
Naranjo 2024], feature selection problem (FSP)
[Premalatha 2024], software and hardware partitioning
problem (HW/SW) [Deng 2024]. These problems have wide
applications ranging from information technology,
economic management, industrial engineering to
telecommunications [Blekos 2024]. It is important to note
that for BOPs, the solution is bounded to binary value only
i.e., 0 or 1, giving a function solution of {0, 1}𝑛. This
limitation reduces the applicability of traditional
deterministic algorithms for large-scale BOPs and thus, has
motivated researchers to turn to stochastic algorithms.
Among such stochastic algorithms, evolutionary algorithms
(EAs) are perhaps the most favored ones [Abdel-Basset
2024].

Particle Swarm Optimization (PSO) is an extremely popular
EA that mimics the characteristics of bird swarms [Eberhart
1995]. Its simple design and easy computation are some of
the reasons why people have embraced it so readily. Most
discrete optimization problems have binary search spaces
and hence requires the use of binary-based algorithms for
solving them. For instance, to solve Binary HS (BHS)
problem, HS basic principles and pitch adjustment rules
were used [Ling 2010a]; Ling et al. [Ling 2010b] employed
a probability estimation operator in doing modification on
the DE for discrete problems. Similarly, new algorithms
such as Binary MOA [Mirjalili 2012] and Binary GSA
[Rashedi 2009] have been created, utilizing transfer
functions and updated positioning rules to maintain the
characteristics of continuous algorithms.

Kennedy and Eberhart proposed the binary version of PSO
known as BPSO in 1997 [Kennedy 1997], which had
different features from that of continuous PSO including a
new transfer function and a modification in the method of
updating the positions of different particles. This adaptation
assists in mapping the continuous search space to binary
states and shifts the position of particles in binary arenas. It
was also reported in [Luh 2011] that the initial BPSO has
some limitations such as local optima entrapment and they

MM SCIENCE JOURNAL I 2024 I DECEMBER

7904

further modified it to optimize its performance. To apply
these algorithms for BOPs, there are techniques developed
to discretize EAs by use of transfer functions [Mirjalili 2013].
Transfer functions can be divided into two main groups—
S-shaped and V-shaped [Mafarja 2017]. These functions
help in converting a real vector to a binary vector that can
be used for discretizing EAs to work on BOPs.

In this paper, novel Gaussian-shaped transfer functions are
proposed and analyzed to improve the convergence rates
of the algorithm and to prevent it from being trapped in local
minima. Using the proposed transfer functions, a novel
binary PSO variant called G-BPSO is introduced. Further,
a comprehensive exposition of the open-source MATLAB
version of G-BPSO for UFLP binary problems is given. The
original and in-house developed source code of the study
along with the datasets used in the analysis, the possible
results and diagrams are made available through GitHub.

2 PROPOSED GAUSSIAN-SHAPED TRANSFER
FUNCTIONS

A transfer function is instrumental in evaluating the
probability of transitioning between the values of the
position vector elements, from 0 to 1 and vice versa in a
binary environment [Rashedi 2009]. This mechanism forces
the particles to move within these restrictions. The
characteristics of the transfer functions are—

The output of a transfer function must be within the interval
[0,1] meaning the probability of a particle changing
positions.

The transfer functions should therefore give a higher
probability of a position change for particles having large
absolute velocities as this indicates that the particles are far
from the optimum solution in the current iteration and thus,
change of position is needed in the next iteration.

On the other hand, a low value of absolute velocity should
be associated with low probability of position change.

The probability indicated by a transfer function should
increase with the velocity, suggesting that particles moving
away from the optimal solution are more likely to adjust their
position vectors to revert to favorable states.

Similarly, the probability should decrease as the velocity
lessens, aligning movement closer to the optimal trajectory.

The Gaussian transfer function employed in the traditional
BPSO [Mafarja 2017] is exemplified by Equation (1) and
shown in Fig. 1. Analysis of Fig. 1 reveals the introduction
of four novel transfer functions.

𝐺1(𝑥) = 𝑒−(𝑥
)2

; 𝐺2(𝑥) = 𝑒−(𝑥
 /2)2

; 𝐺3(𝑥) =

𝑒−(𝑥
 /3)2

; 𝐺4(𝑥) = 𝑒−(𝑥
 /4)2

 (1)

Due to their characteristic curves, these are termed
Gaussian-shaped transfer functions and collectively, they
are referred to as the G-shaped family of transfer functions.
Position updating rules for this family prompts particles to
adopt either a value of 0 or 1, reinforcing the binary nature
of their operation.

3 GAUSSIAN-SHAPED BINARY PARTICLE
SWARM (G-BPSO) ALGORITHM

PSO is an evolutionary computation method originally
developed by Kennedy and Eberhart Eberhart 1995]. This
technique draws inspiration from the social behavior
observed in bird flocking. It utilizes a collection of particles
(candidate solutions) that navigate the search space to
identify the optimal solution. As they move, these particles
track the most promising location (best solution)

encountered along their paths. Essentially, each particle
evaluates its own best-found solution and also considers
the best solution achieved by the entire swarm. In PSO,
every particle must account for its present position, its
current velocity, its proximity to its personal best solution
(𝑝𝑏𝑒𝑠𝑡) and its distance to the swarm best solution (𝑔𝑏𝑒𝑠𝑡)

to adjust its trajectory. The mathematical formulation of
PSO is outlined as follows:

𝑣𝑖
𝑡+1 = 𝑤𝑣𝑖

𝑡 + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑡) + 𝑐2 × 𝑟𝑎𝑛𝑑 ×

(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡) (2)

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (3)

In equations (2) and (3), 𝑣𝑖
𝑡 represents the velocity of

particle 𝑖 at iteration 𝑡, where 𝑤 is a weight function, 𝑐1 and

𝑐2 are acceleration coefficient and 𝑟𝑎𝑛𝑑 is a randomly

generated number between 0 and 1. The term 𝑥𝑖
𝑡 denotes

the current position of particle 𝑖 at iteration 𝑡, 𝑝𝑏𝑒𝑠𝑡𝑖 refers

to the best solution that particle 𝑖 has achieved to date and

𝑔𝑏𝑒𝑠𝑡 signifies the optimal solution discovered by the

swarm up to that point.

Fig. 1: G-shaped family of transfer functions.

In the continuous variant of PSO, particles navigate the
search space using position vectors within the real-valued
domain. This allows for straightforward position updating,
where velocities are simply added to positions as shown in
Equation (3). Within this binary context, where only the
values 0 and 1 are possible, traditional position updating
using Equation (3) is not applicable. Consequently, an
alternative method must be developed to employ velocities
in toggling agents' positions between 0 and 1. Essentially,
a connection between velocity and position must be
established, necessitating a revision of the position
updating process defined in Equation (3). In binary spaces,
updating a position fundamentally involves switching
between the 0 and 1 states, guided by the velocities of the
agents.

The idea is somewhat entrenched in changing the position
of an agent according to the probability deduced by its
velocity. To achieve this, a transfer function is used which
transforms velocity measures into probabilities determining
position changes. Originally, the binary version of PSO
(BPSO) was presented by Kennedy and Eberhart [Kennedy
1997] as an extension of the basic PSO for binary-valued
problem spaces. However, the original BPSO also has the
problem of easily falling into the local optimum and there
are many improved models to get over this drawback.

In this adaptation, particles are restricted to a pure search
space with position vectors that must be set to 0s and 1s
only. The use of the velocities is to abstract the probability
of a bit taking 0 or 1 states. Equation (4) is a Gaussian
function that is employed as the transfer function in order to

MM SCIENCE JOURNAL I 2024 I DECEMBER

7905

normalize all the real-valued velocities between 0 and 1 as
probabilities.

𝐺(𝑣𝑖,𝑗
 (𝑡)) = 𝑒−(𝑣𝑖,𝑗

)2
(𝑡) (4)

This indicates the velocity of particle 𝑖 at iteration 𝑡 in the 𝑗-
th dimension. Once velocities are transformed into
probability values, the position vectors are then updated
based on these probabilities, as per Equation (5).

𝑥𝑖,𝑗
 (𝑡 + 1) = {

0 If 𝑟𝑎𝑛𝑑 < 𝐺(𝑣𝑖,𝑗
 (𝑡 + 1))

1 If 𝑟𝑎𝑛𝑑 ≥ 𝐺(𝑣𝑖,𝑗
 (𝑡 + 1))

 (5)

4 G-BPSO FOR SOLVING UFLP

4.1 Definition and Mathematical Model of UFLP

The UFLP, originally formulated by Kuehn and Hamburger
[Kuehn 1963], is identified as one of the significant NP-hard
problems in location theory complexities [Alultan 1999].
UFLP is crucial in many aspects which include warehouse
design and operations, designing a network for a supply
chain, logistics and transportation and planning the location
of public facilities [Ghaderi 2013]. The problem is defined
as follows—

A set of customers 𝐾 = {𝑘1, 𝑘2, … , 𝑘𝑚} exists, where 𝑚 is

the number of customers and 𝑘𝑖 represents the 𝑖-th

customer. There is also a set of potential facilities 𝑆 =
{𝑠1, 𝑠2, … , 𝑠𝑛}, where 𝑛 denotes the number of facilities and

𝑠𝑗 the 𝑗-th facility. An 𝑚 × 𝑛 service matrix 𝐷 = [𝑑𝑖𝑗]
𝑚×𝑛

details the service cost for servicing the 𝑖-th customer from

the 𝑗-th facility. 𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑛} outlines the fixed costs to

open each facility. The objective of UFLP is to determine
which facilities to open and how to allocate them to
customers so as to minimize the combined costs of service
and facility opening. The mathematical model in Equations
(6-9), for UFLP can be expressed as a minimizing problem,
i.e.,

 Minimize

𝑓(𝑋, 𝑊) = ∑ 𝑚
𝑖=1 ∑ 𝑛

𝑗=1 𝑑𝑖𝑗𝑤𝑖𝑗 + ∑ 𝑛
𝑗=1 𝑔𝑗𝑥𝑗 (6)

𝑠. 𝑡. ∑ 𝑛
𝑗=1 𝑤𝑖𝑗 = 1, 𝑖 = 1,2, … , 𝑚 (7)

𝑤𝑖𝑗 ≤ 𝑥𝑗 , 𝑖 = 1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑛 (8)

𝑤𝑖𝑗 , 𝑥𝑗 ∈ {0,1}, 𝑖 = 1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑛 (9)

where 𝑊 = [𝑤𝑖𝑗]𝑚×𝑛, 𝑤𝑖𝑗 = 1 if customer 𝑘𝑖 is serviced by

facility 𝑠𝑗 and 𝑤𝑖𝑗 = 0. 𝑥𝑗 = 1 if facility 𝑠𝑗 is open. The UFLP

instances can be divided into 4 classes by their size 𝑛 × 𝑚:

the first is 16 instances with size 16×50, named

Cap41∽Cap44, Cap61∽Cap64, Cap71∽Cap74 and

Cap81∽Cap84.

4.2 Computational Experiments

All computations were performed on standard PCs within
Microsoft Windows 10 and equipped with AMD Ryzen3
2200G processors running at 3.50 GHz and 8 GB RAM. All
algorithms were developed in the MATLAB programming
language within the Code environment. The performance of
G-i-BPSO (𝑖 = 1, 2, 3, 4) for solving UFLP is measured.

This comparison aims to demonstrate the high
competitiveness of G-BPSO in solving UFLP challenges.
Each algorithm was run independently 10 times per UFLP
instance with search agent 40 and maximum iterations 100.

4.3 Comparison and Analysis of Computational
Results for UFLP

As observed from Tab. 1, the minimum average for the
algorithm G1-BPSO is the smallest among other algorithms
whenever this algorithm gives the best solution. Notably,
G1-BPSO provides better results for Cap43, Cap44,
Cap63, Cap64, Cap74, Cap81, Cap83 and Cap84. In fact,

G1-BPSO obtains the minimum value of the objective
functions in 8 of the 16 problems of the UFLP. These are
Cap43, Cap44, Cap63, Cap64, Cap74, Cap81, Cap83 and
Cap84. This proves that G1-BPSO has a good
characteristic to converge to the minimum solution
throughout all the iterations. The performance of the G4-
BPSO is better in the other problems in some ways.
Notably, G4-BPSO performs the best on Cap41, Cap62,
Cap71 and Cap72. G4-BPSO reaches the minimum value
in the lowest level in 4 of the 16 problems which confirms
the efficiency of the algorithm in finding the optimal
solutions. For problems Cap42 and Cap61 the minimum
values are the lowest and both G1-BPSO and G4-BPSO
algorithms give similar results. In contrast, G2-BPSO
demonstrates its efficiency in Cap82 and reaches the
minimum value. On the other hand, the G3-BPSO is the
best for Cap74 because it can solve the best solution as
seen in this problem. As can be seen, G1-BPSO has the
smallest minimum in 50% of the problems (8 out of 16)
proving that it is the most successful method in finding the
exact solution. G4-BPSO accomplishes this 25% of the time
(4 out of 16) and demonstrates its capacity but not its
reliability in contrast to G1-BPSO. This again shows that
G2-BPSO and G3-BPSO have lower reliability than G1-
BPSO because each of them finds the lowest minimum
value in one of the problems. This consistent performance
of G1-BPSO indicates that the algorithm is quite stable in
terms of its performance demonstrated by the convergence
curve in Fig. 2.

The maximum values of G1-BPSO are the lowest among
all the tested problems in most of the cases when it shows
the highest performance. The G1-BPSO performs better for
the Cap41, Cap42, Cap43, Cap44, Cap61, Cap64, Cap73,
Cap81, Cap83 and Cap84. Namely, G1-BPSO yields the
best result in terms of the maximum value in 10 out of the
16 considered UFLP problems. Some of these are Cap41,
Cap42, Cap43, Cap44, Cap61, Cap64, Cap73, Cap81,
Cap83 and Cap84. This consistent performance in attaining
lower maximum values speaks volume on the reliability of
G1-BPSO to hold stable solutions across iterations. For
problems Cap62 and Cap82, G2-BPSO is better as it yields
the lowest maxima. G2-BPSO does this in 2 out of the 16
problems, which shows that the proposed approach can
provide optimal solutions to these problems. In cases of
problems Cap63 and Cap74, G4-BPSO is better, as it yields
the lowest maximum values. This is done in 2 of the 16
problems which proves that G4-BPSO has the capacity to
arrive at the best solutions in these kinds of problems. In
problem Cap71, G3-BPSO is the best as it minimizes the
maximum value. In problem Cap72 G2-BPSO, G3-BPSO
and G4-BPSO are at par with the other as they have the
least maximum values. From the results displayed above, it
is seen that the G1-BPSO has the lowest maximum value
in 63% of the problems which signify that the algorithm is
excellent in finding the optimal solutions. G2-BPSO
succeeds in doing this in 13% of the problems (2 out of 16)
proving its proficiency but at the same time its
unpredictability concerning to G1-BPSO. G4-BPSO also
succeeds in attaining this in 13% of the problems (2 out of
16). G3-BPSO accomplish this in 6% of the problems (1 out
of 16). G1-BPSO has shown a consistent performance in
all the runs thus indicating the ability of the algorithm to
perform optimally in all the runs.

MM SCIENCE JOURNAL I 2024 I DECEMBER

7906

Tab. 1: Performance metrics of G-BPSO family algorithms for UFLP problems

Problems Algorithm Minimum Maximum Average Std. Time

Cap41

G1-BPSO 933568.9 933876.3 933722.6 217.3646245 117.1013296

G2-BPSO 937268.8875 938514.65 937891.7688 880.8871115 77.6718501

G3-BPSO 933568.9 936363.2 934966.05 1975.868479 84.4352743

G4-BPSO 932615.75 937692.325 935154.0375 3589.680608 105.942596

Cap42

G1-BPSO 977799.4 977799.4 977799.4 0 110.5861844

G2-BPSO 981538.85 981538.85 981538.85 0 110.2323077

G3-BPSO 983549.675 983752.55 983651.1125 143.4542882 110.8551864

G4-BPSO 977799.4 982615.75 980207.575 3405.673746 110.2475591

Cap43

G1-BPSO 1010641.45 1012643.688 1011642.569 1415.795714 110.7569178

G2-BPSO 1011067.65 1014341.238 1012704.444 2314.77592 110.1741575

G3-BPSO 1010808.163 1014491.4 1012649.781 2604.442213 111.4355116

G4-BPSO 1013856.45 1014767.438 1014311.944 644.1654388 110.0220761

Cap44

G1-BPSO 1034976.975 1034976.975 1034976.975 0 127.4650759

G2-BPSO 1037717.075 1042713.15 1040215.113 3532.758512 128.8655808

G3-BPSO 1037717.075 1046508.088 1042112.581 6216.184552 124.2724103

G4-BPSO 1044253.438 1056220.588 1050237.013 8462.052916 122.4181605

Cap61

G1-BPSO 933568.9 934622.575 934095.7375 745.0607377 120.906408

G2-BPSO 932615.75 938222.0375 935418.8938 3964.243909 124.2333037

G3-BPSO 933568.9 938110.625 935839.7625 3211.484546 119.2123679

G4-BPSO 932615.75 935152.2875 933884.0188 1793.602867 125.7635494

Cap62

G1-BPSO 979099.6125 980176.5125 979638.0625 761.4832927 107.3647425

G2-BPSO 977799.4 977799.4 977799.4 0 124.7331869

G3-BPSO 977799.4 981649.35 979724.375 2722.325752 116.7499259

G4-BPSO 977799.4 978876.3 978337.85 761.4832927 113.5375082

Cap63

G1-BPSO 1010641.45 1020091.513 1015366.481 6682.203276 137.4832544

G2-BPSO 1010808.163 1015508.938 1013158.55 3323.949879 140.3122942

G3-BPSO 1014097.288 1017249.375 1015673.331 2228.862446 118.5596177

G4-BPSO 1012476.975 1012643.688 1012560.331 117.8835393 63.2874312

Cap64

G1-BPSO 1034976.975 1034976.975 1034976.975 0 131.2889561

G2-BPSO 1034976.975 1037717.075 1036347.025 1937.543291 117.8053658

G3-BPSO 1034976.975 1037717.075 1036347.025 1937.543291 121.7511571

G4-BPSO 1037717.075 1040641.45 1039179.263 2067.845393 112.283952

Cap71

G1-BPSO 932615.75 933568.9 933092.325 673.9788285 130.918797

G2-BPSO 936638.65 937268.8875 936953.7688 445.64521 126.979329

G3-BPSO 932615.75 932615.75 932615.75 0 127.7031067

G4-BPSO 933568.9 934199.1375 933884.0188 445.64521 127.125402

Cap72

G1-BPSO 977799.4 981538.85 979669.125 2644.190453 122.9883171

G2-BPSO 977799.4 978876.3 978337.85 761.4832927 121.6306033

G3-BPSO 977799.4 978876.3 978337.85 761.4832927 129.8552684

G4-BPSO 977799.4 978876.3 978337.85 761.4832927 123.7230272

Cap73

G1-BPSO 1010641.45 1010641.45 1010641.45 0 109.4152445

G2-BPSO 1010641.45 1012476.975 1011559.213 1297.912175 109.5062754

G3-BPSO 1010808.163 1013932.9 1012370.531 2209.523076 109.7488977

G4-BPSO 1012476.975 1013506.7 1012991.838 728.1255303 109.1736951

Cap74

G1-BPSO 1037717.075 1045383.788 1041550.431 5421.184398 109.3015241

G2-BPSO 1037717.075 1048082.325 1042899.7 7329.338564 109.143237

MM SCIENCE JOURNAL I 2024 I DECEMBER

7907

 G3-BPSO 1034976.975 1052179.638 1043578.306 12164.11931 109.4911478

G4-BPSO 1037717.075 1040641.45 1039179.263 2067.845393 108.6813492

Cap81

G1-BPSO 799695.025 800652.0375 800173.5313 676.7100284 146.7019072

G2-BPSO 803698.625 805409.2625 804553.9438 1209.603376 148.8237855

G3-BPSO 805859.1125 808847.0125 807353.0625 2112.764352 146.4893845

G4-BPSO 805818.825 805880.05 805849.4375 43.29261268 146.3145998

Cap82

G1-BPSO 862562.8 864993.75 863778.275 1718.94123 147.6058885

G2-BPSO 860960.2625 862260.475 861610.3688 919.3890757 146.9550613

G3-BPSO 865602.325 866731.7 866167.0125 798.588721 147.7737961

G4-BPSO 862663.075 869523.775 866093.425 4851.247494 146.6959447

Cap83

G1-BPSO 899460.975 904231.1625 901846.0688 3373.031929 147.3973123

G2-BPSO 905642.5125 909550.9875 907596.75 2763.709177 148.702049

G3-BPSO 904914.575 919410.6125 912162.5938 10250.24642 146.8517095

G4-BPSO 906678.625 910813.1375 908745.8813 2923.541826 147.1013641

Cap84

G1-BPSO 944008.525 958857.3875 951432.9563 10499.73137 79.9797149

G2-BPSO 953022.6375 975432.7875 964227.7125 15846.36903 79.1895906

G3-BPSO 956402.3875 967562.1375 961982.2625 7891.134901 79.4995506

G4-BPSO 967892.975 974525.75 971209.3625 4690.080181 79.3127924

MM SCIENCE JOURNAL I 2024 I DECEMBER

7908

5

Fig. 2: Convergence curve of G-BPSO family algorithms on UFLP problems

MM SCIENCE JOURNAL I 2024 I DECEMBER

7909

Fig. 3. Box Plot of G-BPSO family algorithms on UFLP problems.

G1-BPSO obtains the lowest average value in 9 out of the
16 tested UFLP instances. Some of these are Cap41,
Cap42, Cap43, Cap44, Cap64, Cap73, Cap81, Cap83 and
Cap84. These consistent performances to achieve lower
average values make G1-BPSO more reliable to maintain
stable solutions over iterations. As for problems Cap 61 and
Cap 74, it can be stated that G4-BPSO is the most effective
one, reaching the lowest average values. G4-BPSO does
this in 2 of the 16 problems meaning that it is able to find
the optimal solutions in the case of these two problems.

Concerning problems Cap62 and Cap82, G2-BPSO is more
effective attaining the lowest average. G2-BPSO does this
effectively in 2 of the 16 problems, which shows its ability to
solve the problems optimally. Specifically, for problem
Cap63, G4-BPSO is the best as it has the minimum
average value. Thus, for problem Cap71, G3-BPSO is
better as it has given the least average value. In problem
Cap72, all the groups, G2-BPSO, G3-BPSO, G4-BPSO are
equally efficient and they have the lowest average values.
As seen, G1-BPSO has the lowest mean value in 56 % of

MM SCIENCE JOURNAL I 2024 I DECEMBER

7910

the problems (9 out of 16), which clearly indicates that it is
efficient in finding the global solutions. G4-BPSO
accomplishes this in 19% of the problems (3 out of 16)
proving its efficiency, yet randomness in comparison to G1-
BPSO. G2-BPSO achieves this in only 13% of the problems
(2 out of 16). G3-BPSO manages to do this in 6% of the
problems (1 out of 16). These consistencies of G1-BPSO
indicate that the algorithm can perform well consistently
throughout the different runs depicted in the box plot (Fig.
3).

Comparing the variability of the results using standard
deviation, the proposed G1-BPSO has less variability in 9
of the 16 problems. The problems are Cap41, Cap42,
Cap44, Cap61, Cap64, Cap73, Cap74, Cap81 and Cap83.
Thus, the effectiveness of the G1-BPSO in offering
consistent and accurate solutions with low fluctuations
between the various runs is evident. G4-BPSO is the best
in solving all the four problems, Cap43, Cap63, Cap74 and
Cap81 as it has the lowest standard deviation. G4-BPSO
achieves this in 4 out of the 16 problems that were tested,
which shows that it can produce reliable results in these
problems. In problems Cap62 and Cap82, G2-BPSO is
more favorable since it yields the lowest standard deviation.
G2-BPSO achieves this in only 2 out of the 16 problems. In
problem Cap71 and Cap84, G3-BPSO is best as it results
in the lowest standard deviations. G3-BPSO is able to do
this in 2 of the 16 problems. In problem Cap42, both G1-
BPSO and G2-BPSO have the lowest standard deviation
values which indicate that both algorithms are equally
efficient. Likewise, G2-BPSO, G3-BPSO and G4-BPSO
have the least standard deviation in problem Cap72 and
hence, the performance is equal. From the analysis of the
results, it can be noted that G1-BPSO yields the lowest
standard deviation in 56% of the problems, thus showing
that the proposed approach can yield more consistent
solutions. This is done in 25% of the problems, again
highlighting the effectiveness, but also the variability of G4-
BPSO compared to G1-BPSO. G2-BPSO does this in 13%
of the problems (2 out of 16) and G3-BPSO in 13% of the
problems (2 out of 16). This constant behavior of G1-BPSO
implies that the algorithm is reliable in attaining high
performance in different runs depicted by the box plot in Fig.
3.

the computational time of the algorithms, it is evident that
G2-BPSO was quicker in solving 6 of the 16 problems
which are Cap41, Cap42, Cap61, Cap71, Cap72 and
Cap84. G4-BPSO is the most efficient in seven problems
out of sixteen problems which are Cap43, Cap44, Cap63,
Cap64, Cap73, Cap74 and Cap81. Out of the four
algorithms, G3-BPSO is the most efficient in solving Cap83.
G1-BPSO is the fastest when it comes to solving Cap62.
Even though the approach of G1-BPSO does not show the
best time in most of the problems, it is relatively efficient in
the most cases. With reference to computational time, G2-
BPSO and G4-BPSO algorithms are more convergent in a
higher number of cases. We can see that G2-BPSO is the
fastest in 6 out of 16 problems (37. 5%). In the overall
comparison, G4-BPSO outperforms all the other algorithms
in solving 7 of 16 problems which is 43.75%. Thus, G3-
BPSO is the fastest in one of the sixteen problems, which
is equal to 6. 25%. G1-BPSO takes the least time in one
problem out of 16 (6. 25%). This distribution also
demonstrates that G2-BPSO and G4-BPSO are more
efficient in terms of time than the other algorithms, but it
likewise shows that, while G1-BPSO is not the fastest
algorithm overall, it can be successful in certain conditions.

 Minimum Value: G1-BPSO > G4-BPSO > G2-BPSO ~

G3-BPSO

 Maximum Value: G1-BPSO > G2-BPSO > G3-BPSO

~ G4-BPSO

 Average Value: G1-BPSO > G2-BPSO > G3-BPSO ~

G4-BPSO

 Standard Deviation: G1-BPSO > G2-BPSO > G3-

BPSO ~ G4-BPSO

 Time: G1-BPSO > G2-BPSO ~ G4-BPSO > G3-BPSO

The comparative performance measure for the minimum
value, the maximum value, the average value and variance
with respect to time suggests that G1-BPSO outperforms
all other BPSO variants for nearly all the UFLP problems.
For this reason, the degree of accuracy in determining the
best solution values with low standard deviations and the
CPU time make G1-BPSO the most suitable algorithm to
solve the set of UFLP problems. It has been noted that
sometimes G2-BPSO, G3-BPSO and G4-BPSO could
perform well on some UFLPs while G1-BPSO outperforms
and is more stable over a wide range of cases. The fact that
it has the unique ability to find the best solutions within small
standard deviations and reasonable CPU time makes it the
most reliable tool for solving the given UFLP problem set.

5 CONCLUSION

This study introduced four novel Gaussian-shaped transfer
functions designed through power functions, leading to the
development of the binary particle swarm optimizer, G-
BPSO for solving binary optimization problems.
Comparative analysis of discrete particle swarm optimizer
demonstrates that Gaussian-shaped transfer functions are
optimal for PSO discretization. Furthermore, G-BPSO not
only proves to be an exceptional algorithm for solving UFLP
but also serves as a valuable reference for designing
discrete evolutionary algorithms.

6 ACKNOWLEDGMENTS

This article was co-funded by the European Union under
the REFRESH – Research Excellence For REgion
Sustainability and High-tech Industries project number
CZ.10.03.01/00/22_003/0000048 via the Operational
Programme Just Transition and has been done in
connection with project Students Grant Competition
SP2024/087 "Specific Research of Sustainable
Manufacturing Technologies“ financed by the Ministry of
Education, Youth and Sports and Faculty of Mechanical
Engineering VŠB-TUO.

7 REFERENCES

[Abdel-Basset 2024] Abdel-Basset, M., Mohamed, R.,
Saber, S., Hezam, I. M., Sallam, K. M., & Hameed, I. A.
(2024). Binary metaheuristic algorithms for 0-1 knapsack
problems: Performance analysis, hybrid variants, and real-
world application. Journal of King Saud University-
Computer and Information Sciences, p. 102093.
https://doi.org/10.1016/j.jksuci.2024.102093

[Alultan 1999] Alultan, K. S., & Al'Fawzan, M. A. (1999). A
tabu search approach to the uncapacitated facility location
problem. Annals of Operations Research, vol. 86(1), pp.
91–103.

[Baldomero-Naranjo 2024] Baldomero-Naranjo, M.,
Kalcsics, J., & Rodríguez-Chía, A. M. (2024). On the
complexity of the upgrading version of the Maximal
Covering Location Problem. Networks.
https://doi.org/10.1002/net.22207

MM SCIENCE JOURNAL I 2024 I DECEMBER

7911

[Blekos 2024] Blekos, K., Brand, D., Ceschini, A., Chou, C.
H., Li, R. H., Pandya, K., & Summer, A. (2024). A review on
quantum approximate optimization algorithm and its
variants. Physics Reports, vol. 1068, pp. 1–66.
https://doi.org/10.1016/j.physrep.2024.03.002

[Choppakatla 2024] Choppakatla, N. D., Sivalenka, M. K.
C., & Boda, R. (2024). Task ordering in multiprocessor
embedded system using a novel hybrid optimization model.
Multimedia Tools and Applications, pp. 1–25.
https://doi.org/10.1007/s11042-024-19083-1

[Deng 2024] Deng, S., Xiao, S., Deng, Q., & Lu, H. (2024).
A hovering swarm particle swarm optimization algorithm
based on node resource attributes for hardware/software
partitioning. The Journal of Supercomputing, vol. 80(4), pp.
4625–4647. https://doi.org/10.1007/s11227-023-05603-7

[Eberhart 1995] Eberhart, R., & Kennedy, J. (1995). A new
optimizer using particles swarm theory. In Proceedings of
the Sixth International Symposium on Micro Machine and
Human Science, Nagoya, Japan.

[Ghaderi 2013] Ghaderi, A., & Jabalameli, M. S. (2013).
Modeling the budget-constrained dynamic uncapacitated
facility location-network design problem and solving it via
two efficient heuristics: a case study of health care.
Mathematical and Computer Modelling, vol. 57(3-4), pp.
382–400. https://doi.org/10.1016/j.mcm.2012.06.017

[Kennedy 1997] Kennedy, J., & Eberhart, R. (1997). A
discrete binary version of the particle swarm algorithm. In
Proceedings of the IEEE International Conference on
Computational Cybernetics and Simulation.

[Kuehn 1963] Kuehn, A. A., & Hamburger, M. J. (1963). A
heuristic program for locating warehouses. Management
Science, vol. 9, pp. 643–666.
https://doi.org/10.1287/mnsc.9.4.643

[Ling 2010] Ling, W., Fu, X., Menhas, M., & Fei, M. (2010).
A Modified Binary Differential Evolution Algorithm. In Li, K.,
Fei, M., Jia, L., & Irwin, G. (Eds.), Life System Modeling and
Intelligent Computing (vol. 6329), Springer Berlin /
Heidelberg, pp. 49–57. https://doi.org/10.1007/978-3-642-
15597-0_6

[Ling 2010] Ling, W., Xu, Y., Mao, Y., & Fei, M. (2010). A
Discrete Harmony Search Algorithm. In Li, K., Li, X., Ma, S.,
& Irwin, G. W. (Eds.), Life System Modeling and Intelligent

Computing (vol. 98), Springer Berlin Heidelberg, pp. 37–43.
https://doi.org/10.1007/978-3-642-15859-9_6

[Luh 2011] Luh, G., & Lin, C. (2011). A binary particle
swarm optimization for continuum structural topology
optimization. Applied Soft Computing, vol. 11, pp. 2833–
2844. https://doi.org/10.1016/j.asoc.2010.11.013

[Mafarja 2017] Mafarja, M., Eleyan, D., Abdullah, S., &
Mirjalili, S. (2017). S-shaped vs. V-shaped transfer
functions for ant lion optimization algorithm in feature
selection problem. In Proceedings of the International
Conference on Future Networks and Distributed Systems
(ICFNDS '17). https://doi.org/10.1145/3102304.3102325

[Mafarja 2018] Mafarja, M., Aljarah, I., Heidari, A. A., Faris,
H., Fournier-Viger, P., Li, X., & Mirjalili, S. (2018). Binary
dragonfly optimization for feature selection using time-
varying transfer functions. Knowledge-Based Systems, vol.
161, pp. 185–204.
https://doi.org/10.1016/j.knosys.2018.08.003

[Mirjalili 2012] Mirjalili, S., & Hashim, S. Z. M. (2012).
BMOA: binary magnetic optimization algorithm.
International Journal of Machine Learning and Computing,
vol. 2(3), pp. 204–208.
https://doi.org/10.7763/IJMLC.2012.V2.114

[Mirjalili 2013] Mirjalili, S., & Lewis, A. (2013). S-shaped
versus V-shaped transfer functions for binary particle
swarm optimization. Swarm and Evolutionary Computation,
vol. 9(4), pp. 1–14.
https://doi.org/10.1016/j.swevo.2012.09.002

[Ozsoydan 2024] Ozsoydan, F. B., & Kasırga, A. E. (2024).
Evolution inspired binary flower pollination for the
uncapacitated facility location problem. Neural Computing
and Applications, pp. 1–14. https://doi.org/10.1007/s00521-
024-09684-0

[Premalatha 2024] Premalatha, M., Jayasudha, M., Čep,
R., Priyadarshini, J., Kalita, K., & Chatterjee, P. (2024). A
comparative evaluation of nature-inspired algorithms for
feature selection problems. Heliyon, vol. 10(1).
https://doi.org/10.1016/j.heliyon.2023.e23571

[Rashedi 2009] Rashedi, E., Nezamabadi-pour, H., &
Saryazdi, S. (2009). BGSA: binary gravitational search
algorithm. Natural Computing, vol. 9(3), pp. 727–745.
https://doi.org/10.1007/s11047-009-9175-3

