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Abstract 

This study introduces Gaussian Binary Particle Swarm Optimization (G-BPSO), designed to address 
binary optimization challenges effectively. G-BPSO employs new transfer functions of the Gaussian type 
derived from the power functions to enable mapping of real-valued vectors of individual encodings into 
binary form. This ensures smooth change between steps and improved convergence. To assess the 
effectiveness of G-BPSO, a host of complex optimization problems such as the un-capacitated facility 
location problem are investigated. Enhanced efficiency and improvement over existing methods in binary 
optimization is observed. The MATLAB code of G-BPSO is made open-access through 
https://github.com/kanak02/GBPSO. 
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1 INTRODUCTION 

Binary integer optimization challenges are a type of 
combinatorial optimization problems namely binary 
optimization problems (BOPs) which includes problems like 
0-1 knapsack problem (0–1KP) [Abdel-Basset 2024], un-
capacitated facility location problem (UFLP) [Ozsoydan 
2024], maximum coverage problem (MCP) [Baldomero-
Naranjo 2024], feature selection problem (FSP) 
[Premalatha 2024], software and hardware partitioning 
problem (HW/SW) [Deng 2024]. These problems have wide 
applications ranging from information technology, 
economic management, industrial engineering to 
telecommunications [Blekos 2024]. It is important to note 
that for BOPs, the solution is bounded to binary value only 
i.e., 0 or 1, giving a function solution of {0, 1}𝑛. This 
limitation reduces the applicability of traditional 
deterministic algorithms for large-scale BOPs and thus, has 
motivated researchers to turn to stochastic algorithms. 
Among such stochastic algorithms, evolutionary algorithms 
(EAs) are perhaps the most favored ones [Abdel-Basset 
2024]. 

Particle Swarm Optimization (PSO) is an extremely popular 
EA that mimics the characteristics of bird swarms [Eberhart 
1995]. Its simple design and easy computation are some of 
the reasons why people have embraced it so readily. Most 
discrete optimization problems have binary search spaces 
and hence requires the use of binary-based algorithms for 
solving them. For instance, to solve Binary HS (BHS) 
problem, HS basic principles and pitch adjustment rules 
were used [Ling 2010a]; Ling et al. [Ling 2010b] employed 
a probability estimation operator in doing modification on 
the DE for discrete problems. Similarly, new algorithms 
such as Binary MOA [Mirjalili 2012] and Binary GSA 
[Rashedi 2009] have been created, utilizing transfer 
functions and updated positioning rules to maintain the 
characteristics of continuous algorithms. 

Kennedy and Eberhart proposed the binary version of PSO 
known as BPSO in 1997 [Kennedy 1997], which had 
different features from that of continuous PSO including a 
new transfer function and a modification in the method of 
updating the positions of different particles. This adaptation 
assists in mapping the continuous search space to binary 
states and shifts the position of particles in binary arenas. It 
was also reported in [Luh 2011] that the initial BPSO has 
some limitations such as local optima entrapment and they 
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further modified it to optimize its performance. To apply 
these algorithms for BOPs, there are techniques developed 
to discretize EAs by use of transfer functions [Mirjalili 2013]. 
Transfer functions can be divided into two main groups— 
S-shaped and V-shaped [Mafarja 2017]. These functions 
help in converting a real vector to a binary vector that can 
be used for discretizing EAs to work on BOPs. 

In this paper, novel Gaussian-shaped transfer functions are 
proposed and analyzed to improve the convergence rates 
of the algorithm and to prevent it from being trapped in local 
minima. Using the proposed transfer functions, a novel 
binary PSO variant called G-BPSO is introduced. Further, 
a comprehensive exposition of the open-source MATLAB 
version of G-BPSO for UFLP binary problems is given. The 
original and in-house developed source code of the study 
along with the datasets used in the analysis, the possible 
results and diagrams are made available through GitHub. 

2 PROPOSED GAUSSIAN-SHAPED TRANSFER 
FUNCTIONS 

A transfer function is instrumental in evaluating the 
probability of transitioning between the values of the 
position vector elements, from 0 to 1 and vice versa in a 
binary environment [Rashedi 2009]. This mechanism forces 
the particles to move within these restrictions. The 
characteristics of the transfer functions are— 

The output of a transfer function must be within the interval 
[0,1] meaning the probability of a particle changing 
positions. 

The transfer functions should therefore give a higher 
probability of a position change for particles having large 
absolute velocities as this indicates that the particles are far 
from the optimum solution in the current iteration and thus, 
change of position is needed in the next iteration. 

On the other hand, a low value of absolute velocity should 
be associated with low probability of position change. 

The probability indicated by a transfer function should 
increase with the velocity, suggesting that particles moving 
away from the optimal solution are more likely to adjust their 
position vectors to revert to favorable states. 

Similarly, the probability should decrease as the velocity 
lessens, aligning movement closer to the optimal trajectory. 

The Gaussian transfer function employed in the traditional 
BPSO [Mafarja 2017] is exemplified by Equation (1) and 
shown in Fig. 1. Analysis of Fig. 1 reveals the introduction 
of four novel transfer functions.  

𝐺1(𝑥) = 𝑒−(𝑥 
 )2

;  𝐺2(𝑥) = 𝑒−(𝑥 
 /2)2

;  𝐺3(𝑥) =

𝑒−(𝑥 
 /3)2

;  𝐺4(𝑥) = 𝑒−(𝑥 
 /4)2

    (1) 

Due to their characteristic curves, these are termed 
Gaussian-shaped transfer functions and collectively, they 
are referred to as the G-shaped family of transfer functions. 
Position updating rules for this family prompts particles to 
adopt either a value of 0 or 1, reinforcing the binary nature 
of their operation. 

3 GAUSSIAN-SHAPED BINARY PARTICLE 
SWARM (G-BPSO) ALGORITHM 

PSO is an evolutionary computation method originally 
developed by Kennedy and Eberhart Eberhart 1995]. This 
technique draws inspiration from the social behavior 
observed in bird flocking. It utilizes a collection of particles 
(candidate solutions) that navigate the search space to 
identify the optimal solution. As they move, these particles 
track the most promising location (best solution) 

encountered along their paths. Essentially, each particle 
evaluates its own best-found solution and also considers 
the best solution achieved by the entire swarm. In PSO, 
every particle must account for its present position, its 
current velocity, its proximity to its personal best solution 
(𝑝𝑏𝑒𝑠𝑡) and its distance to the swarm best solution (𝑔𝑏𝑒𝑠𝑡) 

to adjust its trajectory. The mathematical formulation of 
PSO is outlined as follows: 

𝑣𝑖
𝑡+1 = 𝑤𝑣𝑖

𝑡 + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑡) + 𝑐2 × 𝑟𝑎𝑛𝑑 ×

(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡)      (2) 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1     (3) 

In equations (2) and (3), 𝑣𝑖
𝑡  represents the velocity of 

particle 𝑖 at iteration 𝑡, where 𝑤 is a weight function, 𝑐1 and 

𝑐2 are acceleration coefficient and 𝑟𝑎𝑛𝑑 is a randomly 

generated number between 0 and 1. The term 𝑥𝑖
𝑡  denotes 

the current position of particle 𝑖 at iteration 𝑡, 𝑝𝑏𝑒𝑠𝑡𝑖 refers 

to the best solution that particle 𝑖 has achieved to date and 

𝑔𝑏𝑒𝑠𝑡 signifies the optimal solution discovered by the 

swarm up to that point. 

 

Fig. 1: G-shaped family of transfer functions. 

In the continuous variant of PSO, particles navigate the 
search space using position vectors within the real-valued 
domain. This allows for straightforward position updating, 
where velocities are simply added to positions as shown in 
Equation (3). Within this binary context, where only the 
values 0 and 1 are possible, traditional position updating 
using Equation (3) is not applicable. Consequently, an 
alternative method must be developed to employ velocities 
in toggling agents' positions between 0 and 1. Essentially, 
a connection between velocity and position must be 
established, necessitating a revision of the position 
updating process defined in Equation (3). In binary spaces, 
updating a position fundamentally involves switching 
between the 0 and 1 states, guided by the velocities of the 
agents. 

The idea is somewhat entrenched in changing the position 
of an agent according to the probability deduced by its 
velocity. To achieve this, a transfer function is used which 
transforms velocity measures into probabilities determining 
position changes. Originally, the binary version of PSO 
(BPSO) was presented by Kennedy and Eberhart [Kennedy 
1997] as an extension of the basic PSO for binary-valued 
problem spaces. However, the original BPSO also has the 
problem of easily falling into the local optimum and there 
are many improved models to get over this drawback. 

In this adaptation, particles are restricted to a pure search 
space with position vectors that must be set to 0s and 1s 
only. The use of the velocities is to abstract the probability 
of a bit taking 0 or 1 states. Equation (4) is a Gaussian 
function that is employed as the transfer function in order to 
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normalize all the real-valued velocities between 0 and 1 as 
probabilities.  

𝐺(𝑣𝑖,𝑗
 (𝑡)) = 𝑒−(𝑣𝑖,𝑗

 )2
(𝑡)       (4) 

This indicates the velocity of particle 𝑖 at iteration 𝑡 in the 𝑗-
th dimension. Once velocities are transformed into 
probability values, the position vectors are then updated 
based on these probabilities, as per Equation (5). 

𝑥𝑖,𝑗
 (𝑡 + 1) = {

0 If  𝑟𝑎𝑛𝑑 < 𝐺(𝑣𝑖,𝑗
 (𝑡 + 1))

1 If  𝑟𝑎𝑛𝑑 ≥ 𝐺(𝑣𝑖,𝑗
 (𝑡 + 1))

  (5) 

4 G-BPSO FOR SOLVING UFLP 

4.1 Definition and Mathematical Model of UFLP 

The UFLP, originally formulated by Kuehn and Hamburger 
[Kuehn 1963], is identified as one of the significant NP-hard 
problems in location theory complexities [Alultan 1999]. 
UFLP is crucial in many aspects which include warehouse 
design and operations, designing a network for a supply 
chain, logistics and transportation and planning the location 
of public facilities [Ghaderi 2013]. The problem is defined 
as follows— 

A set of customers 𝐾 = {𝑘1, 𝑘2, … , 𝑘𝑚} exists, where 𝑚 is 

the number of customers and 𝑘𝑖 represents the 𝑖-th 

customer. There is also a set of potential facilities 𝑆 =
{𝑠1, 𝑠2, … , 𝑠𝑛}, where 𝑛 denotes the number of facilities and 

𝑠𝑗 the 𝑗-th facility. An 𝑚 × 𝑛 service matrix 𝐷 = [𝑑𝑖𝑗]
𝑚×𝑛

 

details the service cost for servicing the 𝑖-th customer from 

the 𝑗-th facility. 𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑛} outlines the fixed costs to 

open each facility. The objective of UFLP is to determine 
which facilities to open and how to allocate them to 
customers so as to minimize the combined costs of service 
and facility opening. The mathematical model in Equations 
(6-9), for UFLP can be expressed as a minimizing problem, 
i.e.,  

 Minimize 

𝑓(𝑋, 𝑊) = ∑  𝑚
𝑖=1 ∑  𝑛

𝑗=1 𝑑𝑖𝑗𝑤𝑖𝑗 + ∑  𝑛
𝑗=1 𝑔𝑗𝑥𝑗  (6) 

𝑠. 𝑡. ∑  𝑛
𝑗=1 𝑤𝑖𝑗 = 1, 𝑖 = 1,2, … , 𝑚   (7) 

𝑤𝑖𝑗 ≤ 𝑥𝑗 , 𝑖 = 1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑛   (8) 

𝑤𝑖𝑗 , 𝑥𝑗 ∈ {0,1}, 𝑖 = 1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑛  (9) 

where 𝑊 = [𝑤𝑖𝑗]𝑚×𝑛, 𝑤𝑖𝑗 = 1 if customer 𝑘𝑖 is serviced by 

facility 𝑠𝑗 and 𝑤𝑖𝑗 = 0. 𝑥𝑗 = 1 if facility 𝑠𝑗 is open. The UFLP 

instances can be divided into 4 classes by their size 𝑛 × 𝑚: 

the first is 16 instances with size 16×50, named 

Cap41∽Cap44, Cap61∽Cap64, Cap71∽Cap74 and 

Cap81∽Cap84. 

4.2 Computational Experiments 

All computations were performed on standard PCs within 
Microsoft Windows 10 and equipped with AMD Ryzen3 
2200G processors running at 3.50 GHz and 8 GB RAM. All 
algorithms were developed in the MATLAB programming 
language within the Code environment. The performance of 
G-i-BPSO (𝑖 =  1, 2, 3, 4) for solving UFLP is measured. 

This comparison aims to demonstrate the high 
competitiveness of G-BPSO in solving UFLP challenges. 
Each algorithm was run independently 10 times per UFLP 
instance with search agent 40 and maximum iterations 100. 

4.3 Comparison and Analysis of Computational 
Results for UFLP  

As observed from Tab. 1, the minimum average for the 
algorithm G1-BPSO is the smallest among other algorithms 
whenever this algorithm gives the best solution. Notably, 
G1-BPSO provides better results for Cap43, Cap44, 
Cap63, Cap64, Cap74, Cap81, Cap83 and Cap84. In fact, 

G1-BPSO obtains the minimum value of the objective 
functions in 8 of the 16 problems of the UFLP. These are 
Cap43, Cap44, Cap63, Cap64, Cap74, Cap81, Cap83 and 
Cap84. This proves that G1-BPSO has a good 
characteristic to converge to the minimum solution 
throughout all the iterations. The performance of the G4-
BPSO is better in the other problems in some ways. 
Notably, G4-BPSO performs the best on Cap41, Cap62, 
Cap71 and Cap72. G4-BPSO reaches the minimum value 
in the lowest level in 4 of the 16 problems which confirms 
the efficiency of the algorithm in finding the optimal 
solutions. For problems Cap42 and Cap61 the minimum 
values are the lowest and both G1-BPSO and G4-BPSO 
algorithms give similar results. In contrast, G2-BPSO 
demonstrates its efficiency in Cap82 and reaches the 
minimum value. On the other hand, the G3-BPSO is the 
best for Cap74 because it can solve the best solution as 
seen in this problem. As can be seen, G1-BPSO has the 
smallest minimum in 50% of the problems (8 out of 16) 
proving that it is the most successful method in finding the 
exact solution. G4-BPSO accomplishes this 25% of the time 
(4 out of 16) and demonstrates its capacity but not its 
reliability in contrast to G1-BPSO. This again shows that 
G2-BPSO and G3-BPSO have lower reliability than G1-
BPSO because each of them finds the lowest minimum 
value in one of the problems. This consistent performance 
of G1-BPSO indicates that the algorithm is quite stable in 
terms of its performance demonstrated by the convergence 
curve in Fig. 2. 

The maximum values of G1-BPSO are the lowest among 
all the tested problems in most of the cases when it shows 
the highest performance. The G1-BPSO performs better for 
the Cap41, Cap42, Cap43, Cap44, Cap61, Cap64, Cap73, 
Cap81, Cap83 and Cap84. Namely, G1-BPSO yields the 
best result in terms of the maximum value in 10 out of the 
16 considered UFLP problems. Some of these are Cap41, 
Cap42, Cap43, Cap44, Cap61, Cap64, Cap73, Cap81, 
Cap83 and Cap84. This consistent performance in attaining 
lower maximum values speaks volume on the reliability of 
G1-BPSO to hold stable solutions across iterations. For 
problems Cap62 and Cap82, G2-BPSO is better as it yields 
the lowest maxima. G2-BPSO does this in 2 out of the 16 
problems, which shows that the proposed approach can 
provide optimal solutions to these problems. In cases of 
problems Cap63 and Cap74, G4-BPSO is better, as it yields 
the lowest maximum values. This is done in 2 of the 16 
problems which proves that G4-BPSO has the capacity to 
arrive at the best solutions in these kinds of problems. In 
problem Cap71, G3-BPSO is the best as it minimizes the 
maximum value. In problem Cap72 G2-BPSO, G3-BPSO 
and G4-BPSO are at par with the other as they have the 
least maximum values. From the results displayed above, it 
is seen that the G1-BPSO has the lowest maximum value 
in 63% of the problems which signify that the algorithm is 
excellent in finding the optimal solutions. G2-BPSO 
succeeds in doing this in 13% of the problems (2 out of 16) 
proving its proficiency but at the same time its 
unpredictability concerning to G1-BPSO. G4-BPSO also 
succeeds in attaining this in 13% of the problems (2 out of 
16). G3-BPSO accomplish this in 6% of the problems (1 out 
of 16). G1-BPSO has shown a consistent performance in 
all the runs thus indicating the ability of the algorithm to 
perform optimally in all the runs. 
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Tab. 1: Performance metrics of G-BPSO family algorithms for UFLP problems 

Problems Algorithm Minimum Maximum Average Std. Time 

 

Cap41 

 

G1-BPSO 933568.9 933876.3 933722.6 217.3646245 117.1013296 

G2-BPSO 937268.8875 938514.65 937891.7688 880.8871115 77.6718501 

G3-BPSO 933568.9 936363.2 934966.05 1975.868479 84.4352743 

G4-BPSO 932615.75 937692.325 935154.0375 3589.680608 105.942596 

 

Cap42 

 

G1-BPSO 977799.4 977799.4 977799.4 0 110.5861844 

G2-BPSO 981538.85 981538.85 981538.85 0 110.2323077 

G3-BPSO 983549.675 983752.55 983651.1125 143.4542882 110.8551864 

G4-BPSO 977799.4 982615.75 980207.575 3405.673746 110.2475591 

 

Cap43 

 

G1-BPSO 1010641.45 1012643.688 1011642.569 1415.795714 110.7569178 

G2-BPSO 1011067.65 1014341.238 1012704.444 2314.77592 110.1741575 

G3-BPSO 1010808.163 1014491.4 1012649.781 2604.442213 111.4355116 

G4-BPSO 1013856.45 1014767.438 1014311.944 644.1654388 110.0220761 

 

Cap44 

 

G1-BPSO 1034976.975 1034976.975 1034976.975 0 127.4650759 

G2-BPSO 1037717.075 1042713.15 1040215.113 3532.758512 128.8655808 

G3-BPSO 1037717.075 1046508.088 1042112.581 6216.184552 124.2724103 

G4-BPSO 1044253.438 1056220.588 1050237.013 8462.052916 122.4181605 

 

Cap61 

 

G1-BPSO 933568.9 934622.575 934095.7375 745.0607377 120.906408 

G2-BPSO 932615.75 938222.0375 935418.8938 3964.243909 124.2333037 

G3-BPSO 933568.9 938110.625 935839.7625 3211.484546 119.2123679 

G4-BPSO 932615.75 935152.2875 933884.0188 1793.602867 125.7635494 

 

Cap62 

 

G1-BPSO 979099.6125 980176.5125 979638.0625 761.4832927 107.3647425 

G2-BPSO 977799.4 977799.4 977799.4 0 124.7331869 

G3-BPSO 977799.4 981649.35 979724.375 2722.325752 116.7499259 

G4-BPSO 977799.4 978876.3 978337.85 761.4832927 113.5375082 

 

Cap63 

 

G1-BPSO 1010641.45 1020091.513 1015366.481 6682.203276 137.4832544 

G2-BPSO 1010808.163 1015508.938 1013158.55 3323.949879 140.3122942 

G3-BPSO 1014097.288 1017249.375 1015673.331 2228.862446 118.5596177 

G4-BPSO 1012476.975 1012643.688 1012560.331 117.8835393 63.2874312 

 

Cap64 

 

G1-BPSO 1034976.975 1034976.975 1034976.975 0 131.2889561 

G2-BPSO 1034976.975 1037717.075 1036347.025 1937.543291 117.8053658 

G3-BPSO 1034976.975 1037717.075 1036347.025 1937.543291 121.7511571 

G4-BPSO 1037717.075 1040641.45 1039179.263 2067.845393 112.283952 

 

Cap71 

 

G1-BPSO 932615.75 933568.9 933092.325 673.9788285 130.918797 

G2-BPSO 936638.65 937268.8875 936953.7688 445.64521 126.979329 

G3-BPSO 932615.75 932615.75 932615.75 0 127.7031067 

G4-BPSO 933568.9 934199.1375 933884.0188 445.64521 127.125402 

 

Cap72 

 

G1-BPSO 977799.4 981538.85 979669.125 2644.190453 122.9883171 

G2-BPSO 977799.4 978876.3 978337.85 761.4832927 121.6306033 

G3-BPSO 977799.4 978876.3 978337.85 761.4832927 129.8552684 

G4-BPSO 977799.4 978876.3 978337.85 761.4832927 123.7230272 

 

Cap73 

 

G1-BPSO 1010641.45 1010641.45 1010641.45 0 109.4152445 

G2-BPSO 1010641.45 1012476.975 1011559.213 1297.912175 109.5062754 

G3-BPSO 1010808.163 1013932.9 1012370.531 2209.523076 109.7488977 

G4-BPSO 1012476.975 1013506.7 1012991.838 728.1255303 109.1736951 

 

Cap74 

G1-BPSO 1037717.075 1045383.788 1041550.431 5421.184398 109.3015241 

G2-BPSO 1037717.075 1048082.325 1042899.7 7329.338564 109.143237 
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 G3-BPSO 1034976.975 1052179.638 1043578.306 12164.11931 109.4911478 

G4-BPSO 1037717.075 1040641.45 1039179.263 2067.845393 108.6813492 

 

Cap81 

 

G1-BPSO 799695.025 800652.0375 800173.5313 676.7100284 146.7019072 

G2-BPSO 803698.625 805409.2625 804553.9438 1209.603376 148.8237855 

G3-BPSO 805859.1125 808847.0125 807353.0625 2112.764352 146.4893845 

G4-BPSO 805818.825 805880.05 805849.4375 43.29261268 146.3145998 

 

Cap82 

 

G1-BPSO 862562.8 864993.75 863778.275 1718.94123 147.6058885 

G2-BPSO 860960.2625 862260.475 861610.3688 919.3890757 146.9550613 

G3-BPSO 865602.325 866731.7 866167.0125 798.588721 147.7737961 

G4-BPSO 862663.075 869523.775 866093.425 4851.247494 146.6959447 

 

Cap83 

 

G1-BPSO 899460.975 904231.1625 901846.0688 3373.031929 147.3973123 

G2-BPSO 905642.5125 909550.9875 907596.75 2763.709177 148.702049 

G3-BPSO 904914.575 919410.6125 912162.5938 10250.24642 146.8517095 

G4-BPSO 906678.625 910813.1375 908745.8813 2923.541826 147.1013641 

 

Cap84 

 

G1-BPSO 944008.525 958857.3875 951432.9563 10499.73137 79.9797149 

G2-BPSO 953022.6375 975432.7875 964227.7125 15846.36903 79.1895906 

G3-BPSO 956402.3875 967562.1375 961982.2625 7891.134901 79.4995506 

G4-BPSO 967892.975 974525.75 971209.3625 4690.080181 79.3127924 
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Fig. 2: Convergence curve of G-BPSO family algorithms on UFLP problems 
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Fig. 3. Box Plot of G-BPSO family algorithms on UFLP problems. 

 

G1-BPSO obtains the lowest average value in 9 out of the 
16 tested UFLP instances. Some of these are Cap41, 
Cap42, Cap43, Cap44, Cap64, Cap73, Cap81, Cap83 and 
Cap84. These consistent performances to achieve lower 
average values make G1-BPSO more reliable to maintain 
stable solutions over iterations. As for problems Cap 61 and 
Cap 74, it can be stated that G4-BPSO is the most effective 
one, reaching the lowest average values. G4-BPSO does 
this in 2 of the 16 problems meaning that it is able to find 
the optimal solutions in the case of these two problems. 

Concerning problems Cap62 and Cap82, G2-BPSO is more 
effective attaining the lowest average. G2-BPSO does this 
effectively in 2 of the 16 problems, which shows its ability to 
solve the problems optimally. Specifically, for problem 
Cap63, G4-BPSO is the best as it has the minimum 
average value. Thus, for problem Cap71, G3-BPSO is 
better as it has given the least average value. In problem 
Cap72, all the groups, G2-BPSO, G3-BPSO, G4-BPSO are 
equally efficient and they have the lowest average values. 
As seen, G1-BPSO has the lowest mean value in 56 % of 
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the problems (9 out of 16), which clearly indicates that it is 
efficient in finding the global solutions. G4-BPSO 
accomplishes this in 19% of the problems (3 out of 16) 
proving its efficiency, yet randomness in comparison to G1-
BPSO. G2-BPSO achieves this in only 13% of the problems 
(2 out of 16). G3-BPSO manages to do this in 6% of the 
problems (1 out of 16). These consistencies of G1-BPSO 
indicate that the algorithm can perform well consistently 
throughout the different runs depicted in the box plot (Fig. 
3). 

Comparing the variability of the results using standard 
deviation, the proposed G1-BPSO has less variability in 9 
of the 16 problems. The problems are Cap41, Cap42, 
Cap44, Cap61, Cap64, Cap73, Cap74, Cap81 and Cap83. 
Thus, the effectiveness of the G1-BPSO in offering 
consistent and accurate solutions with low fluctuations 
between the various runs is evident. G4-BPSO is the best 
in solving all the four problems, Cap43, Cap63, Cap74 and 
Cap81 as it has the lowest standard deviation. G4-BPSO 
achieves this in 4 out of the 16 problems that were tested, 
which shows that it can produce reliable results in these 
problems. In problems Cap62 and Cap82, G2-BPSO is 
more favorable since it yields the lowest standard deviation. 
G2-BPSO achieves this in only 2 out of the 16 problems. In 
problem Cap71 and Cap84, G3-BPSO is best as it results 
in the lowest standard deviations. G3-BPSO is able to do 
this in 2 of the 16 problems. In problem Cap42, both G1-
BPSO and G2-BPSO have the lowest standard deviation 
values which indicate that both algorithms are equally 
efficient. Likewise, G2-BPSO, G3-BPSO and G4-BPSO 
have the least standard deviation in problem Cap72 and 
hence, the performance is equal. From the analysis of the 
results, it can be noted that G1-BPSO yields the lowest 
standard deviation in 56% of the problems, thus showing 
that the proposed approach can yield more consistent 
solutions. This is done in 25% of the problems, again 
highlighting the effectiveness, but also the variability of G4-
BPSO compared to G1-BPSO. G2-BPSO does this in 13% 
of the problems (2 out of 16) and G3-BPSO in 13% of the 
problems (2 out of 16). This constant behavior of G1-BPSO 
implies that the algorithm is reliable in attaining high 
performance in different runs depicted by the box plot in Fig. 
3. 

the computational time of the algorithms, it is evident that 
G2-BPSO was quicker in solving 6 of the 16 problems 
which are Cap41, Cap42, Cap61, Cap71, Cap72 and 
Cap84. G4-BPSO is the most efficient in seven problems 
out of sixteen problems which are Cap43, Cap44, Cap63, 
Cap64, Cap73, Cap74 and Cap81. Out of the four 
algorithms, G3-BPSO is the most efficient in solving Cap83. 
G1-BPSO is the fastest when it comes to solving Cap62. 
Even though the approach of G1-BPSO does not show the 
best time in most of the problems, it is relatively efficient in 
the most cases. With reference to computational time, G2-
BPSO and G4-BPSO algorithms are more convergent in a 
higher number of cases. We can see that G2-BPSO is the 
fastest in 6 out of 16 problems (37. 5%). In the overall 
comparison, G4-BPSO outperforms all the other algorithms 
in solving 7 of 16 problems which is 43.75%. Thus, G3-
BPSO is the fastest in one of the sixteen problems, which 
is equal to 6. 25%. G1-BPSO takes the least time in one 
problem out of 16 (6. 25%). This distribution also 
demonstrates that G2-BPSO and G4-BPSO are more 
efficient in terms of time than the other algorithms, but it 
likewise shows that, while G1-BPSO is not the fastest 
algorithm overall, it can be successful in certain conditions. 

 Minimum Value: G1-BPSO > G4-BPSO > G2-BPSO ~ 

G3-BPSO 

 Maximum Value: G1-BPSO > G2-BPSO > G3-BPSO 

~ G4-BPSO 

 Average Value: G1-BPSO > G2-BPSO > G3-BPSO ~ 

G4-BPSO 

 Standard Deviation: G1-BPSO > G2-BPSO > G3-

BPSO ~ G4-BPSO 

 Time: G1-BPSO > G2-BPSO ~ G4-BPSO > G3-BPSO 

The comparative performance measure for the minimum 
value, the maximum value, the average value and variance 
with respect to time suggests that G1-BPSO outperforms 
all other BPSO variants for nearly all the UFLP problems. 
For this reason, the degree of accuracy in determining the 
best solution values with low standard deviations and the 
CPU time make G1-BPSO the most suitable algorithm to 
solve the set of UFLP problems. It has been noted that 
sometimes G2-BPSO, G3-BPSO and G4-BPSO could 
perform well on some UFLPs while G1-BPSO outperforms 
and is more stable over a wide range of cases. The fact that 
it has the unique ability to find the best solutions within small 
standard deviations and reasonable CPU time makes it the 
most reliable tool for solving the given UFLP problem set. 

5 CONCLUSION 

This study introduced four novel Gaussian-shaped transfer 
functions designed through power functions, leading to the 
development of the binary particle swarm optimizer, G-
BPSO for solving binary optimization problems. 
Comparative analysis of discrete particle swarm optimizer 
demonstrates that Gaussian-shaped transfer functions are 
optimal for PSO discretization. Furthermore, G-BPSO not 
only proves to be an exceptional algorithm for solving UFLP 
but also serves as a valuable reference for designing 
discrete evolutionary algorithms.  
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