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Abstract 

In this study predictive models are developed for moisture ratio in the drying process of grapes using a 
desiccant rotary dryer. Response Surface Methodology (RSM) and Genetic Programming (GP) are 
employed to capture the relationship between critical drying parameters—temperature, airflow velocity 
and time—and the moisture ratio. The RSM model demonstrated high accuracy with a correlation 
coefficient of 0.992, whereas the GP model achieved a slightly lower correlation coefficient of 0.983. 
However, GP offered a simpler and interpretable structure. Comparative analysis reveals that both the 
models are in close proximity of experimental data and thus, are suitable for predicting drying parameters 
in food processing. This study highlights the effectiveness of using GP to enhance efficiency in grape 
drying— with implications for broader food dehydration applications. 
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1 INTRODUCTION 

Drying is a fundamental process in various industries, 
particularly in food processing, where it involves the thermal 
removal of moisture to produce a stable, solid product. The 
transfer of energy as heat to the wet solid occurs through 
mechanisms such as convection, conduction, radiation, or 
a combination thereof [Mujumdar 2020]. In the context of 
food preservation, drying plays a crucial role in extending 
the shelf life of agricultural products, maintaining their 
quality and preventing spoilage [Mercer 2023].  

Dryers are essential devices in process technology, 
designed to remove solvents from solid powders using 
methods like convective, conductive, or radiative drying for 
effective thermal separation [Zhou 2022]. Among the 
various types of dryers, solar dryers have gained attention 
and are categorized into direct, indirect, mixed-mode and 
hybrid types [Gautam 2024]. Rotary dryers, in particular, 
are utilized to reduce moisture content in biomass. They 
feature a rotating drum that ensures uniform drying through 
controlled airflow and heat application [Nursani 2021].  

The drying of grapes is a significant process in the 
production of raisins and other dehydrated grape products. 
Effective drying enhances shelf life, reduces waste and 
improves transportation efficiency. Key process parameters 

influencing the quality of dried grapes are temperature, 
humidity, airflow and drying time [Palacios-Rosas 2023]. 
Optimization of these parameters is crucial, as they directly 
affect the nutritional and sensory qualities of the final 
product [Homayoonfal 2023].  

Several studies have explored various drying methods for 
grapes. For instance, Singh et al. [Singh 2023a] developed 
a novel photovoltaic-thermal and thermoelectric generator 
integrated solar dryer for grapes, achieving a reduction in 
moisture content from 4.00 to 1.71 (d.b.). Similarly, 
Kalavathidevi et al. [Kalavathidevi 2023] emphasized the 
use of solar-powered dryers to reduce moisture content.  

Different pretreatment methods have also been 
investigated to improve drying efficiency and product 
quality. Ünal and Şener [Ünal 2023] studied the effects of 
sun-drying and treatments with potassium carbonate and 
ashy water on the antioxidant properties and 
physicochemical characteristics of raisins. Baslar and 
Karabulut [Baslar 2023] evaluated the drying kinetics of 
Sultana and Besni grapes, highlighting that the Page model 
effectively described the drying behavior and that 
temperature significantly impacted moisture diffusivity and 
drying efficiency.  

Despite these advancements, there remains a gap in the 
literature regarding the application of advanced modelling 
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and optimization techniques in the drying process of 
grapes, particularly using desiccant rotary dryers. Modelling 
and optimization are critical for enhancing the efficiency and 
accuracy of drying processes. Without these techniques, 
drying processes may lack efficiency and accuracy, leading 
to suboptimal designs [Yang 2013]. Modelling enhances the 
understanding of complex systems, improves decision-
making and facilitates better management of uncertainty in 
system design [Aughenbaugh 2004]. Furthermore, the 
application of mathematical models can lead to improved 
performance, cost reduction and enhanced overall 
management of information systems [Lvovich 2019] 
[Veeranan 2016]. Recent research indicates a growing 
interest in modelling and optimization techniques, 
particularly using response surface methodology (RSM) 
and machine learning (ML) methods to enhance drying 
processes and energy efficiency in food dehydration [Kilic 
2023] [Chen 2023]. While the RSM-based models can be 
easily visualized as parametric equations, the same is not 
true for ML models. Most ML models operate as black box 
models and thus, it is in not convenient to develop 
parametric equations. To bridge this gap, a genetic 
programming (GP)-based modelling approach is adopted in 
this study. GP models are tuned over several iterations from 
a training data and are visualized as parametric equations. 
Further by controlling the inputted functions, terminals and 
the hyperparameters like depth of tree, the complexity and 
compactness of the model can be adjusted.  

The present study aims to fill this gap by developing a GP-
based model to predict the moisture ratio during the drying 
of grapes in a desiccant rotary dryer. To ascertain the utility 
and effectiveness of the developed GP model, it is 
compared with a RSM model. By integrating advanced 
modelling and optimization techniques, this research seeks 
to enhance the drying process of grapes.  

The rest of the paper is organized as follows— Section 2 
details the experimental setup and the methods used to 
model and optimize the grape drying process. Section 3 
details the results and critically discusses them. Section 4 
summarizes the major findings of the work and presents 
some future directions.    

2 METHODOLOGY 

The methodology followed in this paper is shown in Figure 
1. The process parameters are chosen based on literature 
review. Based on the experimental design, as discussed in 
Section 2.2, 15 experiments are carried out in an in-house 
developed desiccant rotary dryer. The design and working 
of the desiccant rotary dryer are discussed in Section 2.1. 
Next, parametric equations are developed to express the 
moisture ratio as a function of the considered process 
parameters. This is done using RSM and GP methods as 
discussed in Section 2.3 and 2.4, respectively.  

2.1 Experimental Setup 

The experimental setup, illustrated in Figure 2, consists of 
three main sections— the inlet section, the drying chamber 
and the silica gel bed section. In the inlet section (Point 4), 
a 0.5 HP DC motor powers a convergent fan system that 
draws ambient air into the dryer. This air is propelled toward 
a heating coil (Point 14), where it is heated through 
conduction, convection and radiation heat transfer 
mechanisms. A hotwire anemometer located at Point 4 
measures the air velocity entering the system. 
Thermocouples placed at Points 13, 14, 15 and 16 monitor 
temperatures within the dryer to ensure optimal operating 
conditions. 

After heating, the air passes through the silica gel bed 
section (Point 6). Here, 500 grams of silica gel removes 
moisture from the air, producing warm, dry air suitable for 
efficient drying. The dehumidified air then enters the drying 
chamber (Point 5), which contains perforated trays 
mounted on a rotating mechanism (Figure 3). This 
mechanism is driven by a 0.25 horsepower (HP) motor and 
is constructed from mild steel (layered with aluminum foil) 
with dimensions of 23 × 23 inches. As the trays rotate, the 
warm, dry air uniformly contacts the materials, enhancing 
moisture evaporation through combined conductive, 
convective and radiative heat transfer. The specification of 
the various components is presented in Table 1. 

  

Fig. 1: Flowchart of the proposed methodology 

 

Fig. 2: CAD model of experimental setup 
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2.2 Design of Experiments 

The experimental design was structured using the Box-
Behnken Design (BBD). Three critical independent 
variables were selected based on their influence on the 
drying process— drying temperature (𝑇), air velocity (𝑉) 

and drying time (𝑡). Each variable was studied at three 

levels—low, medium and high—to capture a wide range of 
operating conditions. The specific levels for each factor 
were determined based on preliminary trials and literature 
recommendations, ensuring practical relevance and 
feasibility. The BBD design used in this study is shown in 
Table 2.  

The choice of BBD over other designs was motivated by its 
rotatability and efficiency in requiring fewer experimental 
runs than a central composite design, without sacrificing the 

ability to fit a second-order polynomial model. The design 
matrix generated by BBD included 15 experimental runs, 
encompassing combinations of the three factors at different 
levels while avoiding extreme combinations that could be 
impractical or unsafe. 

The dependent variable measured in each experiment was 
the moisture ratio (𝑀𝑅) of the grapes, calculated using, 

𝑀𝑅 =
𝑀𝑡−𝑀𝑒

𝑀0−𝑀𝑒
         (1) 

where 𝑀𝑡 is the moisture content at time t, 𝑀0 is the initial 

moisture content and 𝑀𝑒 is the equilibrium moisture 

content. The experiments were randomized to minimize the 
effects of uncontrolled variables and were conducted in 
triplicate to ensure reproducibility and reliability of the data. 

Tab. 1: Specification of various components 

Component Material  Specifications 

Duct arrangement Mild Steel 12 × 12 inch 

Inlet fan Fiber 8 × 8 inch 

Heater Ceramic base with aluminum wire heating coil 1500 watt 

Desiccant chamber 5 tray of aluminum beds loaded with silica gel 500 gm 

Drying chamber 3 trays of mild steel layered with aluminum foil 23 × 23 inch 

Rotatory Mechanism of drying chamber Motor 12 × 12 inch 

 

Tab. 2: BBD-based experimental 𝑀𝑅 and predictions by RSM and GP 

Drying 

Temperature, 𝑻 (°𝑪) 

Drying Time, 

𝒕 (𝒎𝒊𝒏) 

Air Flow Rate, 

𝑽 (𝒎/𝒔) 

Moisture Ratio, 

𝑴𝑹 
RSM GP 

50 

65 

3000 1 0.329239 0.3309 0.3038325 

3000 1 0.343771 0.344 0.31760925 

50 

65 

50 

65 

4200 1 0.323993 0.3303 0.3038325 

4200 1 0.342149 0.3433 0.31760925 

3600 0.5 0.297674 0.2989 0.2712075 

3600 0.5 0.311597 0.312 0.28498425 

50 

65 

57.5 

57.5 

3600 1.5 0.374938 0.3706 0.3364575 

3600 1.5 0.380645 0.3836 0.35023425 

3000 0.5 0.308813 0.3071 0.278095875 

4200 0.5 0.299996 0.2955 0.278095875 

57.5 

57.5 

57.5 

57.5 

3000 1.5 0.368085 0.3679 0.343345875 

4200 1.5 0.381037 0.3781 0.343345875 

3600 1 0.343726 0.3413 0.310720875 

3600 1 0.345261 0.3413 0.310720875 

57.5 3600 1 0.342143 0.3413 0.310720875 

 

2.3 Response Surface Methodology 

RSM is a collection of statistical and mathematical 
techniques useful for modelling and analysing problems 
where a response of interest is influenced by multiple 
variables. In this study, RSM was employed to develop a 
second-order polynomial model that describes the 
relationship between the independent variables—𝑇, 𝑉 and 

𝑡—and the response variable, 𝑀𝑅. 

The general form of the quadratic model used is given as,  

𝑀𝑅 = 𝛽0 + ∑𝑖=1
3  𝛽𝑖𝑋𝑖 + ∑𝑖=1

3  𝛽𝑖𝑖𝑋𝑖
2 + ∑𝑖=1

2  ∑𝑗=𝑖+1
3  𝛽𝑖𝑗𝑋𝑖𝑋𝑗 + 𝜖

      (2) 

where 𝛽0 is the intercept term,  𝛽𝑖 are the linear coefficients, 

𝛽𝑖𝑖 are the quadratic coefficients, 𝛽𝑖𝑗 are the interaction 

coefficients and 𝜖 represents the residual error. 

The coefficients were estimated using the method of least 
squares and the adequacy of the model was evaluated 
through analysis of variance (ANOVA). Statistical 
significance was determined at a 95% confidence level. 

2.4 Genetic Programming 

GP is an evolutionary algorithm-based methodology 
inspired by biological evolution to find computer programs 
that perform a user-defined task. In this study, GP was 
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utilized to develop a predictive model for the moisture ratio 
during the drying of grapes.  

 

Fig. 3: Dryer tray assembly 

 

The GP algorithm begins with a randomly generated 
population of mathematical expressions composed of 
functions (in this case, addition, subtraction, multiplication, 
division) and terminals (input variables and constants). The 
fitness of each expression is evaluated based on its ability 
to predict the experimental moisture ratio data. The fitness 
function used was the mean square error (MSE) between 
the predicted and observed values. 

Genetic operators such as selection, crossover and 
mutation were applied to evolve the population over 
successive generations. Selection favoured expressions 
with lower MSE, while crossover and mutation introduced 
new structures and variations. To prevent overfitting and 
ensure model interpretability, constraints were imposed on 
the maximum tree depth and length. The GP-generated 
model can be expressed as an explicit mathematical 
equation, providing transparency and ease of interpretation 
compared to traditional "black-box" ML models. 

3 RESULTS AND DISCUSSION 

3.1 Experimental Analysis 

Table 2 shows the 15 experiments carried out at various 
parametric combinations as ascertained by BBD pattern. 
Primarily, it is observed that drying temperature and time 
significantly impact moisture ratio, while airflow rate has a 
moderate effect. Variables such as temperature-time 
interactions, may also have significant influence. To further 
understand this, predictive models built using RSM and GP 
are studied in detail in the subsequent sections.  

3.2 Development of RSM model 

For the RSM model initially a full second-order model is built 
on which then ANOVA is applied. The insignificant terms in 
the full second-order RSM model are then identified as 
those having 𝑝 > 0.1 and are eliminated using stepwise 

elimination method. The ANOVA for the final RSM model is 

shown in Table 3. The developed model is of the following 
form, 

𝑀𝑅 = 0.13796 + 0.000872𝑇 + 0.000064𝑡 + 0.006351𝑉 +
0.000018𝑡𝑉 − 0.0000000115𝑡2    (3) 

The model itself is highly significant with 𝐹 − 𝑣𝑎𝑙𝑢𝑒 of 

121.23 and 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 less than 0.0001. It is important to 

note here that the first-order term 𝑡 in the model has p-

value>0.1 but still is not eliminated to maintain hierarchical 
model.  

Tab. 3: ANOVA results for RSM 

Source SS df MS 
𝐹
− 𝑣𝑎𝑙𝑢𝑒 

𝑝
− 𝑣𝑎𝑙𝑢𝑒 

Model 0.0108 5 0.0022 121.23 < 0.0001 

𝑇 0.0003 1 0.0003 19.2 0.0014 

𝑡 9.34E-07 1 9.34E-07 0.0524 0.8235 

𝑉 0.0103 1 0.0103 576.43 < 0.0001 

𝑡𝑉 0.0001 1 0.0001 6.65 0.0275 

𝑡² 0.0001 1 0.0001 3.84 0.0785 

Residual 0.0002 
1

0 
0   

Lack of Fit 0.0001 7 0 0.6181 0.7302 

Pure Error 0.0001 3 0   

Cor Total 0.011 
1

5 
   

 

3.3 Development of GP model 

Similarly, the GP model is developed using the 
experimental data and is of the following form, 

𝑀𝑅 = 0.19266 + 0.00091845𝑇 + 0.06525𝑉   (4) 

For the GP model, maximum model depth and length is set 
to 8 and 18 respectively, while the iteration limit is 50 
generations. Mean squared error (MSE) is considered as 
the loss function. As the generations evolve, the relative 
frequency of the terminals and functions are continuously 
updated to try and lower the MSE. Figure 4a shows the 
variation of the terminals and functions across iterations. It 
is observed that all the functions (i.e., +, -, * and /) start with 
the same frequency at the start of the training cycle but 
undergo dynamic changes depending on the fitted GP 
models. Similarly, in Figure 4b the relative frequency of 
variables shows a lot of variation. 𝑡 is observed to be 

insignificant as its relative frequency is observed to be very 
close to 0 during the entire training stage. It should be noted 
here that the GP model shown in equation (4) is simplified 
version of the actual GP model achieved after the training 
process. 

Figure 5 shows the convergence of GP training process. It 
shows gradual improvement in average fitness, especially 
in the early iterations, before levelling off. On the other 
hand, global fitness (best-performing individual so far) 
largely remains relatively constant, indicating a high-
performing solution early in the process that remains 
optimal throughout most of the iterations. This suggests that 
a strong solution was found early and remained largely 
unchanged throughout the process. This indicates that the 
GP algorithm quickly identifies an optimal or near-optimal 
solution and then focuses on refining the population around 
that high-performing solution.
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Fig. 4: Relative frequency across iterations of (a) terminals and functions (b) variables in GP model 

 

3.4 Comparative analysis of RSM and GP 

Figure 6 presents the comparative analysis of experimental 
and predicted values of 𝑀𝑅 using RSM and GP models. A 

strong correlation between experimental and predicted 
values is indicated which means that both the models are 
quite accurate. The RSM model demonstrates exceptional 
predictive accuracy, with predicted values closely aligning 
with experimental values (R = 0.992). The GP model also 
shows good predictive performance, although slightly lower 
than RSM (R = 0.983). 

The RSM model (Figure 7a) exhibits a tight residual 
distribution around zero, with residuals ranging from -0.008 
to 0.008, indicating high accuracy and precision. The GP 
model (Figure 7b) shows a wider residual range (0.020 to 
0.040), suggesting somewhat less accuracy. Notably, GP 
residuals are more scattered, particularly at higher  

predicted values (0.32-0.40). Figure 8 compares the 
residuals of both the models against a normal distribution. 
The data points fall within the expected bounds indicating 
that the residuals are normally distributed. The mean (𝜇) 

and standard deviation (𝜎) are shown as 𝜇 = 0.00000625 

and 𝜎 = 0.00346 for RSM and 𝜇 = 0.02848, 𝜎 = 0.00547 for 

GP respectively.  

 
Fig. 5: Convergence curve of GP 

 

 

Fig. 6: Experimental versus predicted value of moisture ratio (𝑀𝑅) 

 

Table 4 indicates that the RSM model, with an R value of 
0.992, R² of 0.984 and Adjusted R² of 0.973, indicates a 

high correlation and excellent model fit. However, the 
complexity of the RSM model, with multiple terms and 
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higher-order interactions, contrasts with the simplicity of the 
GP model. Despite the slightly lower accuracy of the GP 
model, indicated by an R value of 0.983, R² of 0.966 and 
Adjusted R² of 0.957, it still provides a reasonable predictive 
capability. The Predicted R² of 0.949 for GP is comparable 
to the RSM model’s 0.953, showing that GP remains 

effective in predicting new observations. Although the GP 
model's MSE (0.000839) and MAE (0.028482) are higher, 
suggesting greater prediction error, the compactness of the 
GP model offers a clear trade-off. 

 

 

Fig. 7: Predicted value versus residual of (a) RSM model (b) GP model 

 

 

Fig. 8: Normal probability plot of residual of (a) RSM model (b) GP model 

 

Tab. 4: Comparison of prediction performance of RSM and GP model 

Metric RSM GP 

𝑅 0.992 0.983 

𝑅² 0.984 0.966 

Adjusted 𝑅² 0.973 0.957 

Predicted 𝑅² 0.953 0.949 

𝑀𝑆𝐸 0.000011 0.000839 

𝑀𝐴𝐸 0.002622 0.028482 
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Figure 10 shows the influence of temperature (𝑇 in °C) 

and airflow velocity (𝑉 in m/s) on the moisture ratio (𝑀𝑅) 

based on the GP model. Although the GP model aligns 
with the RSM model in indicating a negative correlation 
between temperature and moisture ratio, it exhibits a 
slightly less pronounced response to airflow velocity. 
This difference suggests that, while GP captures the 
fundamental relationships, it might prioritize model 
simplicity over capturing every subtle interaction, making 
it suitable for applications requiring straightforward 
interpretations without sacrificing major accuracy 

 
Fig. 9: Influence of 𝑇 (°𝐶) and 𝑡 (𝑚𝑖𝑛) at various  𝑉 (𝑚/𝑠) 

on 𝑀𝑅 as per RSM model 

 

Fig. 10: Influence of 𝑇 (°𝐶) and 𝑉 (𝑚/𝑠) on 𝑀𝑅 as per 

GP model 

4 CONCLUSION 

The study successfully developed and compared 
predictive models using Response Surface Methodology 
(RSM) and Genetic Programming (GP) for the moisture 
ratio in grape drying within a desiccant rotary dryer. Both 
models demonstrated a strong correlation with 
experimental data, with RSM achieving slightly higher 
accuracy than GP. The RSM model, while more 
complex, provided precise predictions with minimal 
residuals, whereas the GP model offered a simpler 
structure with acceptable accuracy, showcasing its utility 

in applications where model interpretability and 
compactness are prioritized. 

The findings underscore the potential of advanced 
modeling techniques to optimize drying parameters, 
which can enhance efficiency in food dehydration 
processes. Future work could expand on this by 
exploring hybrid models combining RSM and GP to 
further improve prediction accuracy and computational 
efficiency. 
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