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Abstract 

Static and dynamic stiffness [N/m] determine the ability of solids to resist constant and variable loads. 
Both elastic characteristics of a machine tool effect their quality assessment. Thermal stiffness 
(comprising heat stiffness and temperature stiffness) [W/µm] is a key accuracy indicator of the machine 
tool's ability to resist temperature influences. The proposed method creates the thermo-physical structure 
of a machine tool, based on a set of homogeneous heat-active elements and quasi-thermostable links. 
Quasi-thermostable links retain constant properties when the thermal state of the heat-active elements 
changes within a given range, building and determining their spatial and temporal relative position. The 
structural formula is given: < S-thermal link > -<F-function of the thermal behavior of a heat-active element 
> - <S-thermal link>. When exposed to heat, heat-active elements change their temperature and 
thermoelastic properties change their temperature and thermoelastic properties with stress, strain, 
distortion. Thermal behavior F-functions characterize these changes over time. Thermal energy causes 
a heat exchange in the machine tool and leads to temperature differences, thermoelastic stresses and 
geometrical deformations. The material used in machine tools enables the thermal conduction, convection 
and radiation due to its dimensions, volume and surface area, thermal conductivity. Elasticity effects base 
on thermal linear expansion coefficient, modulus of elasticity, thermal energy storage due to its heat 
capacity. The analysis of the structural formula defines and describes generalized thermal stiffness 
indicators of a machine tool as a reaction to thermal effects when the heat sources are constantly active 
and when the heat source is absent, but only the ambient temperature changes. This paper presents 
relationships between the thermal stiffness and the thermo-physical property indicators of the machine 
tool. Examples of thermal stiffness are described for several machine tool types. 
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1 INTRODUCTION 

Since 1950, scientists have carried out numerous research 
investigations on thermal processes and effects occurring 
in machine tools during their operation, including the 
following areas: 

1) definition of values for temperatures and thermal 
deformations in machine tools of different types; [Kuz 2018] 

2) determining the influence of heat sources and 
thermophysical parameters on the thermal mode of the 
machine tool, its parts, and assemblies; [Kuz 2019] 

3) investigating the impact of design features of separate 
units and machine parts on their temperature fields and 
deformations. [Mek 2009] 

4) determining the influence of the thermal mode of the 
machine on the parameters of machining accuracy and 
geometrical error of individual units and machine parts; 
[May 2012] 

5) numerical methods (mainly based on the finite element 
method) to determine and evaluate temperatures and 

thermal deformations of parts, assemblies, machine tools; 
[Yto 2010] 

6) investigation of means, methods, and techniques of 
compensation, numerical compensation, reduction of 
temperature deformations and temperature fields, control of 
temperature fields and deformations of machine tools, their 
units and parts; [Gro 2015] 

7) research on possible applications of new kinds of 
materials for improving thermal stiffness and thermal 
stability of machine tools. 

During the past 30 years, the International Organization for 
Standardization (ISO) has developed several standards for 
test procedures on geometrical accuracy under static or no 
load conditions: ISO 230-3 (Determination of Thermal 
Effects); ISO 10791-10 (Thermal Displacement in 
Machining Centers); ISO 13041-8 (Thermal Displacement 
in Lathes), ISO 16907-2015 (Numerical Compensation of 
Geometric Errors), which define test methods for evaluating 
thermal influences that lead to thermal deformation of a 
machine tool structure and/or its positioning systems. 



 

MM Science Journal | 2021 | Special Issue on ICTIMT2021 

4549 

Table 1 Thermo-physical transformations 

Machine tool errors are typically measured values that 
provide an objective assessment of machine tool 
properties, including the machine tool’s ability to withstand 
constant, variable, and periodic force and thermal 
influences. 

2 DEFINITION OF STIFFNESS 

2.1 Mechanical stiffness 

Thus, the relationship describes the elastic displacements 
of machine units and parts by  

𝐹 = 𝑘 · 𝑥 ;     (1) 

that links the stiffness coefficient 𝑘 as static force 𝐹 / 
displacement 𝑥 or dynamic force / velocity �̇�. The dynamic 

behavior (amplitude and frequency) of the elastic system is 
described by the equation  

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑘𝑥(𝑡) = 𝐹(𝑡);   (2) 

from which the dynamic stiffness coefficient 𝑘 is 

determined. Therefore, the machine tool’s static and 
dynamic characteristics are specified by the dependencies 
that express the relation of the output variable of the system 
𝑥 - the displacement or the speed of this displacement �̇� to 

the input variable 𝐹 - the force.  

2.2 Thermal stiffness 

A thermo-physical transformation consists of heat flow 
through conduction, convection, and radiation causing 
temperature changes and thermoelastic stress, resulting in 
strain and deformations, see Table 1. Thermal conduction 
follows the heat equation for rigid bodies and mechanical 

contact: 𝑄 =
𝜆𝐴𝑡𝛥𝑇

𝐿
 [J]. Thermal convection follows the heat 

equation: 𝑄 = 𝛼𝐴𝑡𝛥𝑇 [J]. Thermal radiation follows the 

absorption equation (reflection , absorption , 

transmission ): 𝛷 = 𝛼𝛷𝑠 [W]. Heat exchange between 
thermal capacities of two bodies follows: 𝑐1𝑚1 · (𝑇1 − 𝑇𝑚) =
𝑐2𝑚2 · (𝑇𝑚 − 𝑇2). 

The thermoelastic displacement of the machine parts is 
calculated by the linked equations for the thermal 
conductance and thermoelasticity: 

 𝛻𝑈𝑖 +
1

1−2𝜇
·

𝜕𝑒

𝜕𝑖
−

2𝛽(1+𝜇)

(1−2𝜇)
·

𝜕𝑇

𝜕𝑖
= 0;   (3) 

where i = x, y, z; ∇=
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2; – Laplace operator; μ – 

Poisson coefficient; 𝑒 =
1−2𝜇

2𝐺·(1+𝜇)
· (𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧) + 3𝛽𝑇; 

– volumetric expansion ratio; 𝛽 – thermal linear elongation 

coefficient; 𝐺 =
𝐸

2(1+𝜇)
; - shear module; 𝐸 – Young’s 

modulus of elasticity; (𝜎𝑥𝑥;  𝜎𝑦𝑦;  𝜎𝑧𝑧) – nominal stress; 𝑇 – 

temperature distribution. 

 

This leads to a prominent and essential difference in the 
application of stiffness and thermal stiffness, since, in the 
case of static and dynamic stiffness, the place and direction 
of force application and the place of their measurement are 
fixed. In the case of the machine tool’s thermal stiffness, the 
place of measurement is fixed (e. g. TCP), but the size and 
location of the position and direction of the thermal impact 
are not clearly defined. Such an "objective" assessment, 
only based on the equation’s solution of the related problem 
of thermal elasticity and heat conductivity, cannot provide a 
basis for assessing the value of the machine tool’s thermal 
stiffness and, therefore, nor control the thermal behavior of 
the machine tool at all stages of its life cycle. 

The most desirable characteristic is an indicator that most 
clearly defines this property of the machine tool. The 
concept of stiffness is known as the ability to resist the force 
influences with elastic deformations, which has the 
dimension [N/µm], and a test method. For thermal 
deformations, there are similar attempts to define the 
concept of "thermal stiffness" as the ability of the structure 
to resist heat influences with elastic deformations and 
determine it as a ratio of power losses at a certain speed 
and the resulting maximum deformation in the selected 
coordinates. 

3 THERMO-PHYSICAL STRUCTURE 

Thus, there is a need for a deeper and more comprehensive 
analysis of the mechanism of formation and change of 
thermal processes in machine tools concerning the 
definition and justification of the machine tool’s evaluation 
and concept of thermal stiffness. 

3.1 Elements and links 

The thermo-physical structure of a machine tool can be 
described as an interconnected set of homogeneous heat-
active elements forming and determining the tool’s and the 
workpiece’s relative position in space and time. The heat-
active element is a part (or unit) that changes its 
thermoelastic properties, or it transmits the thermoelastic 
effect. This leads to a change in the initial state of the 
relative position of the tool and workpiece in space and 
time. Heat-active elements form a thermo-physical 
structure with the support of quasi-thermostable links that 
retain their properties when the heat state of the heat-active 
elements changes within the specified range. 
Consequently, the combination of heat-active elements and 
their links forms the thermo-physical structure in the 
machine tool’s space. Due to the heat influence over time, 
the heat-active elements change their thermoelastic 
properties. These changes over time are characterized by 
the function of the heat-active elements’ thermal behavior. 
The combination of elements by their links and their thermal 
behavior’s function forms the thermo-physical structure of 

thermo-physical 

transformation 
geometry  power heat flow temperature thermo- 

elasticity 
deformation 

properties volume, 

mass, 

density, 

surface 

energy 

efficiency,  

heat 

generation 

conduction, 

convection, 

radiation 

thermal 

resistance  

Young’s 

modulus, 

stress  

elongation, 

bending,  

strain 

metrics 𝒌 [N/m] 

stiffness 

coefficient 

Q [J]  

amount of heat 

𝑲𝜽𝒋 [W/K] 

heat 

elasticity,  

𝑲𝜶𝒋 [K/W] 

heat stiffness  

ΔТ [K]  

temperature 

difference  

C [J/K]  

heat 

capacity 

𝜷 thermal 

linear 

elongation, 

𝑲𝑻𝒋 [K/µm] 

temperature 

stiffness 

𝑲𝑸𝒋 = 𝐾𝑇𝑗𝐾𝜃𝑗 

[W/µm] 

thermal 

stiffness  
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the machine tool in space and time. Thus, a new view on 
the thermal system of the machine tool has led to a 
definition of new concepts and new terms. 

Heat-active elements in a machine tool comprise spindle, 

ball screw, column, bed, table, spindle headstock, etc. As a 
rule, these elements have relatively large linear 
dimensions, heat dissipation area, weight, and are part of a 
kinematic chain that determines the relative position of the 
tool and workpiece. Other components of the machine tool 
have small linear sizes and low temperature, small weight, 
and consequently also low heat capacity, small area of a 
heat-dissipating surface, so that they cannot essentially 
influence the machine tool’s thermal condition.  

Quasi-thermostable links are defined by assembly 

interfaces between elements (guides, bearings, nut, etc.), 
and by locations of their thermal symmetry or gravity center 
of masses. For example, assembly interfaces include the 
fixation points of the spindle, ball screw, motion 
transmission points, and points that restrict (or exclude) the 
movement of elements, etc. Consequently, the position of 
the spindle support does not remain constant when the 
spindle is heated, but the support ensures a relatively stable 
relative position of the spindle and spindle headstock when 
heated. Another link is the interface between the table, 
spindle headstock, and ball screw carried out via the screw 
nut’s transmission, which also ensures a relatively stable 
relative position when heated. This is the reason why these 
links are called quasi-thermostable, as they only remain the 
most stable under thermal conditions and maintain their 
initial relative position to any other parts, unit, or component 
of the machine tool. The analysis of links and interfaces of 
heat-active elements in machine tools allows classifying 
them according to the number of link conditions 
(restrictions) imposed by the linked elements on the 
displacements relative to each other. The coordinates of 
surface points ought to satisfy the interface equations, 
which this research determines as the equations of quasi-
thermostable links. 

3.2 Thermoelastic structure 

In order to design a thermoelastic structure of a machine 
tool, it is necessary to define in detail the types of typical 
quasi-thermostable links, heat-active elements, and 
functions of thermal behavior. 

It is useful for a heat-active element to choose a beam of 
any cross-section which movement is limited by quasi-
stable links applied on its border. In general, a beam end 
can move in three orthogonal axes and elastically rotate 
around them, if no link restricts these linear and rotational 
motions. The simplest heat-active element with one rigid 
link is an immovable beam at one end, and the second end 
can move freely in the axial directions. Regardless of the 
number of heat-active elements, all coordinate structures 
will have the form of a closed polygon, but the desired one 
will be a closing vector that connects the first and last quasi-
thermostable link. Any of the thermoelastic structures 
constructed in this way can be transformed into three 
independent structures - its projections to the coordinate 
planes XOY, XOZ, ZOY. For each such projection, a 
mathematical expression can be formulated for determining 
the closing vector. The analysis of this expression will make 
it possible to find the value of thermal stiffness and heat 
resistance in the selected directions and planes, and also 
estimate the influence of individual structural components.  

Figure 1 shows typical coordinate thermoelastic structures 
with varying degrees of complexity. Thus, a coordinate 
thermoelastic structure can consist of one, two, three, or 
more elements. 

   

Fig. 1: Three coordinate thermoelastic structures: a – one-
element, b – two-elements, c – three-elements, d – quasi 

thermostable links in a ball-screw-nut-table unit. 

Then the simplest thermoelastic structure will consist of a 
quasi-thermostable link and a heat-active element 
characterized by the function of thermal behavior and a 
quasi-thermostable link. If a heat-active element transmits 
a thermoelastic effect through an intermediate link, such a 
thermoelastic structure consists of three links and functions 
of thermal behavior. An example of such a structure is the 
thermoelastic displacement of a table caused by the 
heating of a ball screw. In this case, the quasi-thermostable 
links are the ball screw bearings and the screw-nut 
transmission. Another type of heat-active element is a plate 
or disk of any cross-section, where their motion and 
deformation is limited by quasi-stable links applied on its 
border. A typical element with a single rigid link can often 
be considered a column of a metal cutting machine, which 
is immovably fixed to the bed. The bed itself is an example 
of a heat-active element, with no links limiting motion and 
deformations. 

3.3 Temperature fields 

Non-uniformity and inhomogeneity of the temperature field 
of heat-active elements lead to temperature stresses and 
deformations, which is an essential factor in their thermal 
behavior and causes linear and angular changes in the 
heat-active elements. It is known as the N.A. Yaryshev ratio 
that estimates ζ - the inhomogeneity of the temperature 
field: 

𝜁 =
𝐾𝑛

𝐵𝑖𝑣
=  

1

√𝐵𝑖𝑣
2+1,437𝐵𝑖𝑣+1

;    (4) 

If the distribution of the temperature field is homogenous, 
then the following applies: 𝜁 = 1; B𝑖𝑣 → 0. The higher the 

inhomogeneity of the temperature field, the lower the value 
𝜁 = 0; B𝑖𝑣 → ∞ N.A. Yaryshev's ratio. Consequently, the 

Biot number characterizes the inhomogeneity degree of the 
temperature field. Thus, if the Biot number for practical 
application is less than 0.1, the temperature field is close to 
homogenous, and in this case there will be no bending of 
the plate. If the Biot number is greater than 0.1, the 
temperature field is inhomogeneous, which will cause 
bending temperature deformations. The Biot number 𝐵𝑖 =
𝛼𝐿

𝜆
 depends on and is determined by 𝜆 heat conductivity 

[W/mK] and the size 𝐿 [m].  

For machine tools, 𝛼 values at free convection vary 
between 4 and 15, and 𝜆 values for relevant steels vary 

between 40 and 50, and 𝜆 values for cast iron range from 

50 to 65. Then, the values of the Biot number ranges can 
be determined: for steel parts 𝐵𝑖 = (0.08 − 0.375), for cast 
iron parts 𝐵𝑖 = (0.062 − 0.3). Therefore, the 𝐿 size of heat-

active elements, for which the temperature field can be 
considered relatively homogeneous, will be within the 
following ranges: for steels - less than 1.13-0.27 m, for cast 
iron - less than 1.61-0.33 m. 
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4 THERMOELASTIC DEFORMATIONS 

4.1 Kinematic chain 

Therefore, a thermo-physical model of a machine tool can 
most often be built in three ways: based on heat-active 
elements from only beams, based on heat-active elements 
from plates or disks, or based on a combination of plate and 
beam-shaped heat-active elements. 

Quasi-thermostable links, depending on the restrictions 
they create in each coordinate direction of the element's 
motion, can be rigid, elastic, with a gap, movable, allowing 
rotation, or representing their combinations. 

An example of a rigid link may be the fixation of a column 
to the machine bed. Elastic links are typical for the fixation 
points in the ball screw and spindle supports. Sometimes, 
one of the elastic links can be taken as a rigid one if their 
stiffness ratio differs significantly from each other. The 
condition under which one of the elastic supports is 
considered rigid can be found in the following ratio: 

𝛿1

𝛿2
=

𝑘2

𝑘1
;      (5) 

where 𝛿1; 𝛿2 – thermoelastic deformations at bearing 1 and 

2; 𝑘1; 𝑘2 – stiffness of bearing 1 and 2. 

If the ratio 
𝑘2

𝑘1
 is close to zero, there is practically no 

displacement of the first bearing, and it can be considered 
a rigid link of this bearing with the heat-active element. All 
links between two heat-active elements of the machine tool 
are also subject to the conditions of interchange and 
compatibility of linear and angular motions, i.e. each heat-
active element of the machine tool performs only those 
displacements that are allowed by their mutual links 
between each other. 

When building coordinate systems in positions of quasi-
thermostable links, thermoelastic structures of machine 
elements can be obtained in space. These thermoelastic 
structures of machine tools equivalently replace the 
machine tool’s construction when considering the 
thermoelastic displacements in the machine tool caused by 
the heating of its parts and assemblies. Thus, if the machine 
tool elements are units and parts that determine its 
kinematic chain, such a structure will characterize the 

thermoelastic structure of the machine tool’s kinematic 
chain and determine the nature of thermal processes due 
to this method and the location of heat sources. The 
analysis of such thermoelastic structures will make it 
possible to evaluate the machine's kinematic chain 
regarding restrictions of thermal displacements. Moreover, 
the process of such an analysis is essential in a structural-
kinematic thermophysical analysis, assessing the thermal 
stiffness of the entire machine tool. 

4.2 Function of thermal behavior 

The generalized structural formula of the machine tool (see 
Fig.2) has the following form: 

 <quasi-thermostable link 𝐶𝑖> - <function of thermal 

behavior 𝐹𝑖 > - <quasi-thermostable link 𝐶𝑖>  

and is equal to the number of heat-active elements. 

 

Fig. 2: General thermo-physical structural scheme. 

Figure 3 presents examples of thermoelastic kinematic 
structures of machine tools, including rigid quasi-
thermostable links. 

     

Fig. 3: Examples of thermoelastic kinematic structures of 
machine tools with rigid vertical columns. 

In general, the thermoelastic structure of any machine tool 
consists of 𝑖 heat-active element 𝑖 = (𝑛 − 1), in places of 

quasi-thermostable links 𝑛 of which 𝑛 coordinate systems 

are built. The position of one coordinate system relative to 
another is determined by the radius vector 𝑟𝑖 and the matrix 

𝑀𝑖 of their mutual position. In a sequential transition from 

one coordinate system to another, the position 𝛿𝑟 of a fixed 

point (which is set in the coordinate system of the tool) is 
determined in the coordinate system of the part or vice 
versa. The same relative displacement 𝛿𝑟 of the tool and 

the workpiece can also be defined as the difference 
between the sum of the two vectors having the same origin 
with different end points, respectively in the position of the 
tool point and the workpiece. The results of such 
calculations will be equal and will determine the error 
(difference) of the mutual change of vector positions in the 
adopted coordinate system. 

4.3 Thermal displacement 

During heating of the machine tool, its heat-active elements 

change the linear sizes on value 𝛿𝑟𝑖
0, and inhomogeneity of 

a temperature field causes their angular rotation (bending) 
defined by a matrix of angular temperature deformations 
𝛿𝛼𝑖 of heat-active elements of the machine tool 

𝑩𝑖
𝛼 = 𝑩𝑖𝑥

𝛼 × 𝑩𝑖𝑦
𝛼 × 𝑩𝑖𝑧

𝛼  ;    (6) 

see Tab. 2, and depending on the machine tool and 

workpiece accuracy, the 2nd order matrices (𝛿𝛼𝑥
2, 𝛿𝛼𝑥, 𝛿𝛼𝑦) 

and higher order (𝛿𝛼𝑧𝛿𝛼𝑥𝛿𝛼𝑦; 𝛿𝛼𝑦𝛿𝛼𝑥
2; 𝛿𝛼𝑦

2𝛿𝛼𝑧
2) are 

assumed as zero. The value of the relative displacement 𝛿𝑟 

of the tool and workpiece due to the heating of the machine 
tool's thermoelastic elements will be determined by the 
difference between the values of the machine tool’s 
thermoelastic system, respectively, after and before 
heating. Then the general expression for estimating the 
value and nature of temperature deformations built by the 
thermoelastic deformation of the machine tool, the following 
equation will be applied: 

𝛿𝑟 = ∑ (∏ 𝑀𝑖
𝑛−(𝑖+1)
𝑖=1 ) × 𝐾𝑖  × 𝛿𝑟𝑖

0 +𝑛−1
𝑖=1 ∑ (∏ 𝑀𝑖

𝑛−(𝑖+1)
𝑖=1 ) ×𝑛−1

𝑖=1

(𝑩𝑖
𝛼)𝐼 × 𝑟𝑖 + ∑ (∏ 𝑀𝑖

𝑛−(𝑖+1)
𝑖=1 ) × (𝑩𝑖

𝛼)𝐼 × 𝐾𝑖𝛿 × 𝑟𝑖
0𝑛−1

𝑖=1 ; (7) 

where 𝛿𝑟 = |𝛿𝑟𝑥𝛿𝑟𝑦𝛿𝑟𝑧1|
𝑇
- error matrix of mutual relative 

position of the tool and the part, caused by thermoelastic 

deformations of the machine; 𝛿𝑟𝑖
0 = |𝛿𝑟𝑖𝑥

0 𝛿𝑟𝑖𝑦
0 𝛿𝑟𝑖𝑧

0 1|
𝑇
 - matrix 

of thermoelastic deformations of heat-active elements at 
quasi-thermostable links; 𝐾𝑖 - relative stiffness coefficient of 

a heat-active element at quasi-thermostable links;  

(𝑩𝑖
𝛼)𝐼 = 𝑩𝑖

𝛼 − 𝑰;     (8) 

where I – unity matrix.  

For describing the method mentioned above, a typical 
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𝑩𝑖
𝛼

=

|

|

|
(1 −

𝛿𝛼𝑦
2

2
) (1 −

𝛿𝛼𝑧
2

2
) − (1 −

𝛿𝛼𝑦
2

2
) 𝛿𝛼𝑧 −𝛿𝛼𝑦 0

−𝛿𝛼𝑥𝛿𝛼𝑦 (1 −
𝛿𝛼𝑧

2

2
) + (1 −

𝛿𝛼𝑥
2

2
) 𝛿𝛼𝑧 −𝛿𝛼𝑧𝛿𝛼𝑥𝛿𝛼𝑦 + (1 −

𝛿𝛼𝑦
2

2
) (1 −

𝛿𝛼𝑧
2

2
) −𝛿𝛼𝑥 (1 −

𝛿𝛼𝑦
2

2
) 0

𝛿𝛼𝑦 (1 −
𝛿𝛼𝑥

2

2
) (1 −

𝛿𝛼𝑧
2

2
) + 𝛿𝛼𝑥𝛿𝛼𝑧 −𝛿𝛼𝑦𝛿𝛼𝑧 (1 −

𝛿𝛼𝑥
2

2
) + 𝛿𝛼𝑥 (1 −

𝛿𝛼𝑧
2

2
) (1 −

𝛿𝛼𝑥
2

2
) (1 −

𝛿𝛼𝑦
2

2
) 0

0 0 0 1

|

|

|

Table 2: Matrix of angular temperature deformation.

example of a heat-active element is considered, such as a 
spindle, or a ball screw, or long parts of any cross-section, 

reduced to a beam. Displacement of a thermostable link 

𝛿𝑟𝑖
0 = U  during heating will be defined by the decision of 

the connected one-dimensional problem of thermo-
elasticity, with restrictions of an arrangement of bearings as 
rigid thermostable links, and a problem of thermal 
conduction with thermal loads - heat emission in bearing 
supports. Then the solution of the equation system is: 

𝜕2𝑈

𝜕𝑥2
= 𝛽 ·

𝜕𝑇

𝜕𝑥
;      (9) 

with boundary conditions 𝜀𝑥𝑥 · 𝐸 − 𝛽 · 𝐸 · 𝑇 = 𝜎𝑥𝑥 for 
𝑥 = 0; and 𝜀𝑥𝑥 · 𝐸 − 𝛽 · 𝐸 · 𝑇 = −𝜎𝑥𝑥 for 𝑥 = 𝑙. 

Considering the specified stiffness 𝑘1; 𝑘2 (front and rear 

spindle bearings), and considering force 𝐹 = 𝑘 · 𝑈 and 

𝜎𝑥𝑥 =
𝐹

𝐴
=

𝑘·𝑈

𝐴
; 𝜀𝑥𝑥 =

𝜕𝑈

𝜕𝑥
 the cross-sectional area of the beam 

results in the following equation: 

𝑈(𝑙,𝑟)

∫ 𝛽𝑇(𝑥,𝑡)𝑑𝑥
𝑙

0

=
𝑘𝛴

𝑘2
−

𝑘𝛴

𝑘2
·

𝑙𝐹𝑝𝑟

𝐸𝐹 ∫ 𝛽𝑇(𝑥,𝑡)𝑑𝑥
𝑙

0

+
𝑘𝛴(𝑘1

−1+
𝑙

𝐸𝐹
)𝛿0

∫ 𝛽𝑇(𝑥,𝑡)𝑑𝑥
𝑙

0

=
𝑘𝛴

𝑘2
−

𝑘𝛴𝑘𝑝𝑟

𝑘2𝑘𝑒
+ 𝑘𝛴(𝑘1

−1 + 𝑘𝑒
−1)𝑘0;    (10) 

or for 𝑛 = 2 with 𝑥 = 𝑙 the resulting equation is 

𝑈(𝑙, 𝑟) = 𝛽 · 𝐾𝑖 ∫ 𝑇(𝑥, 𝑡)𝑑𝑥 = 𝛽 · 𝐾𝑖· · 𝑙 · 𝑇∅
𝑙

0
(𝑥, 𝑡);  (11) 

where 𝐾𝑖 = [
𝑘Σ

𝑘2
(1 −

𝑘pr

𝑘𝑏
) + 𝐾0 (1 −

𝑘Σ

𝑘2
)] - relative stiffness 

coefficient of a heat-active element at quasi-thermostable 

links; 𝑘Σ = (𝑘1
−1 + 𝑘𝑒

−1 +
𝑙

𝐸𝐹
)

−1
- total stiffness; 𝑘𝑏 =

𝐸𝐹

𝑙
 – 

mechanical stiffness of the element; 𝐹𝑝𝑟 – preload (tension, 

compression) force; 𝑘𝑝𝑟 =
𝐹𝑝𝑟

∫ 𝛽𝑇(𝑥,𝑡)𝑑𝑥
𝑙

0

 – preload stiffness;  

𝑘0 =
𝛿0

∫ 𝛽𝑇(𝑥,𝑡)𝑑𝑥
𝑙

0

 – relative stiffness coefficient of clearance; 

𝛿0– clearance of the thermostable link. 

4.4 Distribution of temperatures 

To determine the distribution of temperatures 𝑇(𝑥) and/or 

the average 𝑇∅(𝑥) of a heat-active element, e.g. spindle or 

ball screw, the thermal model is assumed as a cylinder (or 
beam of any cross-section) of finite length. The heat 
exchange takes place on the cylinder surfaces with the 
environment with a heat convection coefficient . The heat 

is transferred through the surfaces at the bearing fixing 
points. The lengths of the heat-active element and the real 
lengths of the same element can be used to determine the 
thermal model’s diameter from the equality of the Biot 
number or Fourier criteria: 

𝑑𝑚𝑝 =
𝛼∅(∑ 𝑑𝑖

2𝑙𝑖−∑ 𝑑𝑖
2𝑙𝑗)

∑ 𝛼𝑖𝑑𝑖
2𝑙𝑖−∑ 𝛼𝑗𝑑𝑖

2𝑙𝑗+∑ 𝛼𝑛𝑑𝑖
2(𝑑𝑖

2−𝑑𝑗
2)

;   (12) 

where 𝑖, 𝑗 – is the number of spindle cross-sections of the 

same external or internal diameter; 𝑑𝑖 , 𝑑𝑗  - is the value of 

the external and internal diameter respectively; 𝑙𝑖 , 𝑙𝑗 – is the 

length of the cross-section with the same external or 

internal diameter; 𝛼∅ is the accepted heat convection 

coefficient of the heat model or calculated from the 
relationship: 

𝛼∅ = ∑ 𝛼𝑖 𝐴𝑖 +
∑ 𝛼𝑛𝐴𝑛

∑ 𝐴𝑖+∑ 𝐴𝑛
;    (13) 

where 𝛼𝑖 is the heat convection coefficient of the heat 

transfer surface 𝐴𝑖 (internal and external), 𝛼𝑡𝑖 is the heat 

convection coefficient of the beam end surfaces. Then the 
solution of the equation regarding the temperature 
distribution with the specified boundary conditions will be 
determined as follows, see fig. 4: 

𝑇1(𝑥) =
𝑄2

𝐴𝑚2𝜆
·

𝐷𝑚

1+
𝑚1
𝑚2

·𝐷𝑚 tanh(𝑚1𝐿1)
·

cosh(𝑚1𝑥)

cosh(𝑚1𝐿1)
+

𝑄1

𝐴𝑚1𝜆
·

cosh(𝑚1𝑥)

cosh(𝑚1𝐿1)
·

[cosh(𝑚1𝐿1)−sinh(𝑚1𝐿1)](
𝑚1
𝑚2

𝐷𝑚−1)

1+
𝑚1
𝑚2

·𝐷𝑚 tanh(𝑚1𝐿1)
+

𝑄1

𝐴𝑚1𝜆
·

[cosh(𝑚1𝑥) − sinh(𝑚1𝑥)];    (14) 

where 𝐷𝑚 =
𝐾𝑚𝑒2(𝐿−𝐿1)𝑚2+1

𝐾𝑚𝑒2(𝐿−𝐿1)𝑚2−1
; 𝐾𝑚 =

𝑚2+(
𝛼𝑚

𝜆
)

𝑚2−(
𝛼𝑚

𝜆
)
; 𝑚1

2 = 4
𝛼1

𝜆𝑑
; 𝑚2

2 =

4
𝛼2

𝜆𝑑
 or 𝑚1,2

2 =
𝑃𝛼1,2

𝜆⋅𝐴
 ; where Р – perimeter, 𝐴 – square area. 

Fig. 4: Temperature 𝑇(𝑥) distribution over a beam length L 
of a heat-active element. 

4.5 Thermal machine model 

The methodology of the machine tool’s temperature model 
is also based on the above-described methodology of the 
machine tool’s thermal physical structure. The structural 
components have the same description form, however, in 
contrast to the structural components, which are subject to 
thermoelastic deformations; they are described by the 
following equation: 

< S - thermal link> - <F - function of thermal behaviour of a 
heat-active element > - <S - thermal link>.  

The general temperature model of a machine tool and its 
structure can be represented as a system of 𝑛 bodies (heat-

active elements) with heat sources and flows (thermal links) 
located in space. Parts and units of a machine tool 
exchange thermal energy with the environment and among 
themselves. It is necessary to find the spatial and temporal 
temperature distribution of parts and units (bodies – heat-
active elements) for different operation modes. Moreover, 
the thermophysical properties of materials, heat 
conductivity between the bodies, and the power of sources 
and energy flows do not depend on temperature. The 
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mathematical model of such a system of bodies [Kuz 2019] 
with heat sources consists of n linear equations of thermal 
conductance: 

𝛻2𝑇𝑘(𝑥𝑖 , 𝑡) +
𝑄𝑒𝑘(𝑥𝑖,𝑡)

𝜆𝑘
=

1

𝑎𝑘
·

𝜕𝑇𝑘(𝑥𝑖,𝑡)

𝑡
;   (15) 

where 𝑥𝑖 = 𝑥, 𝑦, 𝑧 - brief coordinate record; 𝑘 =
1,2,3, … 𝑙, … 𝑛 - body numbers in the system; 𝑄𝑒𝑘 = 𝑄𝑜𝑘 +
𝑄𝑖𝑘 - general spatial and temporal distribution of energy 

sources in 𝑘 body; 𝑄𝑜𝑘 - amount of heat supplied to 𝑘 body 

from outside; 𝑄𝑖𝑘 - amount of heat released in body; 𝜆𝑘, - 

effective or true heat conductivity and 𝑎𝑘 - heat convection 
coefficient of 𝑘 body. 

The heat flux supplied to the heat-active element from the 
sources is generally discharged into the environment and 
to other heat-active elements of the machine, and is also 
used to heat the element itself. Based on the energy 
conservation law, the heat flux 𝑄𝑇𝑘 supplied by the heat 

conduction from inside the 𝑘 body to its surface area 𝐴𝑘 is 

transferred by 𝑄𝜆𝑘 to the surrounding bodies and the 

environment 𝑄𝛼𝑘: 

𝑄𝑇𝑘 = 𝑄𝜆𝑘 + 𝑄𝛼𝑘  ;     (16) 

Based on the Fourier law, the heat flux is brought to the 
element of the surface area 𝑑𝐴𝑘 of the body 𝑘, and the 

whole surface 𝐴𝑘 is found by summing up all the elementary 

flows 

𝑄𝑇𝑘 = − ∫ 𝜆𝑘𝐴𝑘
·

𝜕𝑇𝑘(𝑥𝑖,𝑡)

𝜕𝑛
𝑑𝐴𝑘  ;    (17) 

Thermal flux 𝑄𝜆𝑘𝑙 from body 𝑘 to body 𝑙 will be determined 

on the basis of the equation 

𝑄𝜆𝑘𝑙 = 𝜓𝑘𝑙 · [(𝑇𝑘)𝐴𝑙
− (𝑇𝑙)𝐴𝑘

] ;    (18) 

where 𝜓𝑘𝑙 – thermal conductance, [W/K] - the inverse value 

is 𝑅 - thermal resistance 𝜓𝑘𝑙 =
1

𝑅𝑘𝑙
= 𝑅𝑘𝑙

−1 between the 

bodies 𝑘 and 𝑙; (𝑇𝑘)𝐴𝑙
 and (𝑇𝑙)𝐴𝑘

 - average surface 

overheating of those parts of the surface 𝐴𝑙 and 𝐴𝑘 of the 

bodies 𝑘 and 𝑙, which participate in the mutual heat 
exchange. 

Summarizing all heat flows of the body 𝑘 to all bodies 𝑙 =
 1,2,3, … n, results in: 

𝑄𝜆𝑘 = ∑ 𝑄𝜆𝑘𝑙
𝑛
𝑙=1
𝑘≠𝑙

= ∑ 𝜓𝑘𝑙 · [(𝑇𝑘)𝐴𝑙
− (𝑇𝑙)𝐴𝑘

]𝑛
𝑙=1
𝑘≠𝑙

;  (19) 

Thermal flux 𝑄𝛼𝑘 from the body 𝑘 into the environment 

based on the Newton-Roman law: 

𝑄𝛼𝑘 = 𝜓𝛼𝑘𝑇𝛼𝑘 = 𝜓𝛼𝑘 · [(𝑇𝑘)𝐴𝛼
− 𝑇air];   (20) 

where (𝑇𝑘)𝐴𝛼
 - respectively the 𝑘 body temperature, from 

the surface of which 𝐴𝑙 ≠ 𝐴𝛼 heat is exchanged with the 

environment with a temperature of 𝑇air. Substituting the 

expressions (17), (19) and (20) in (16) results in: 

− ∫ 𝜆𝑘𝐴𝑘

𝜕𝑇𝑘(𝑥𝑖,𝑡)

𝜕𝑛
𝑑𝐴𝑘 = 𝜓𝛼𝑘𝑇𝛼𝑘 + ∑ 𝜓𝑘𝑙 · [(𝑇𝑘)𝐴𝑙

− (𝑇𝑙)𝐴𝑘
]𝑛

𝑙=1
𝑘≠𝑙

;

      (21) 

and assuming that the initial temperature distribution in 

body 𝑘 is 𝑇𝑘(𝑥𝑖 , 𝑡) = 𝑇𝑘
𝑏(𝑥𝑖) at 𝑡 = 0. 

The system of equations (16) - (21) is a general 
mathematical model of the temperature mode of 𝑛 bodies 

obtained with one limitation: the linear problem statement is 
considered, i.e., it is assumed that the physical properties 
of bodies 𝜆𝑘 heat conductivity, 𝑎𝑘 heat convection 

coefficient, 𝜓𝑘𝑙 thermal conductance and the power of 

sources 𝑄𝑘 do not depend on temperature and that 

individual bodies (machine parts) are isotropic. In practice, 

it is not always necessary to have such detailed information 
about the temperature mode of the machine parts and units 
(bodies); sometimes, it is enough to limit the average 
temperature values. For this case, the system of equations 
(15) - (21) can be converted using the following averaging 
operator: 

𝐿[𝜑𝑘(𝑥𝑖 , 𝑡)] = 𝑉𝑘
−1 · ∫ 𝜑𝑘(𝑥𝑖 , 𝑡)

𝑉𝑘
𝑑𝑉𝑘 = 𝜑𝑘𝑉(𝑡); (22) 

considering that the initial temperature 𝑇𝑘𝑣(0) = 𝑇𝑘
𝑏;  

𝜆𝑘 = (𝑐𝜌)𝑘𝜌𝑘𝑎𝑘; 𝐶𝑘 = (𝑐𝜌)𝑘𝜌𝑘𝑉𝑘 - full heat capacity [J/K]), 

will result in 

𝐶𝑘
𝜕𝑇𝑘𝑣(𝑡)

𝜕𝑡
+ 𝜓𝛼𝑘𝑇𝛼𝑘 + ∑ 𝜓𝑘𝑙 · [(𝑇𝑘)𝐴𝑙

− (𝑇𝑙)𝐴𝑘
]𝑛

𝑙=1
𝑘≠𝑙

= 𝑄𝑒𝑘; (23) 

Expression (23) can also be recorded in a matrix form: 

[𝑪] ×
𝜕[𝑻]

𝜕𝑡
+ [𝜶] × [𝑻] = [𝑸];    (24) 

For different types of thermal links between bodies and 
those between bodies and the environment, the thermal 
resistance R will be determined by the following equations: 

𝑅 =
1

𝐴𝛼
; [

𝐾

 𝑊
];     (25) 

- during thermal coupling, when heat is transferred by 
convection at the border between the body and liquid (gas); 

𝑅 = ∑ 𝑅𝑖
𝑛
𝑖=1 =

1

𝐴
· ∑

ℎ𝑖

𝜆𝑖

𝑛
𝑖=1 ; [

𝐾

 𝑊
]   (26) 

- during thermal coupling, when heat is transferred through 
a composite flat wall of consecutive bodies; 

𝑅 = ∑ 𝑅𝑖
𝑛
𝑖=1 =

1

𝐴
· ∑ (

1

𝛼1
+

ℎ𝑖

𝜆𝑖
+

1

𝛼2
)𝑛

𝑖=1 ; [
𝐾

 𝑊
]    (27) 

- in case of thermal coupling, when heat is transferred 
through a composite flat wall of consecutive bodies at the 
borders of which there is a heat exchange with liquid or gas 
with heat transfer coefficients equal to 𝛼1 and 𝛼2 

respectively; 

𝑅 = ∑ 𝑅𝑖
𝑛
𝑖=1 =

1

𝐴1
· ∑ (

1

𝛼1
+

ℎ𝑖

𝜆𝑖

𝑛
𝑖=1 +

𝐴1

𝐴2⋅𝛼2
);  (28) 

- in thermal coupling, when heat is transferred through a 
composite flat wall of sequential bodies of different areas А1 

and А2, at the borders of which there is a heat exchange 

with liquid or gas, with heat transfer coefficients equal to 𝛼1 

and 𝛼2 respectively; 

𝑅 = ∑ 𝑅𝑖
𝑛
𝑖=1 =

1

𝐿𝑑1𝛼1
+ ∑

1

2𝜋𝐿𝜆𝑖

𝑛
𝑖=1 · ln (

𝑑𝑖+1

𝑑𝑖
) +

1

𝐿𝑑𝑖+1𝛼2
; [

𝐾

 𝑊
] (29) 

- in case of thermal coupling, when heat is transferred 
through a cylindrical wall or a cylindrical wall of sequential 
bodies at the borders of which there is a heat exchange with 
liquid or gas with heat transfer coefficients equal to 𝛼1 and 

𝛼2 respectively; 

𝑅−1 = ∑
1

𝑅𝑖

𝑚
𝑖=1 ; [

𝑊

 𝐾
]     (30) 

- in thermal coupling, when the heat is transferred by a set 
of different methods that are not dependent on each other. 

𝑇𝑗 = 𝑇𝑗
𝑏 + [

𝑄𝑒𝑞+𝑄𝑗·(1+
𝜓𝑒𝑞𝛼

𝜓𝑗𝑒𝑞
)

𝜓𝛼𝑗+𝜓𝑒𝑞𝛼·(1+
𝜓𝛼𝑗

𝜓𝑗𝑒𝑞
)

− 𝑇𝑗
𝑏] ·

[
𝑚2𝑗·(1−𝑒

−𝑚1𝑗𝑡
)−𝑚1𝑗×(1−𝑒

−𝑚2𝑗𝑡
)

𝑚2𝑗−𝑚1𝑗
] + [

𝑄𝑗−𝑇𝑗
𝑏𝜓𝛼𝑗

𝐶𝑗·(𝑚2𝑗−𝑚1𝑗)
] · [(1 −

𝑒−𝑚2𝑗𝑡) − (1 − 𝑒−𝑚1𝑗𝑡)] ;    (31) 

In most standard machine tools, when for the 𝑗 – compo-

nent of the machine tool, the thermal fluxes are constant 



 

MM Science Journal | 2021 | Special Issue on ICTIMT2021 

4554 

𝑄𝑗 = 𝑐𝑜𝑛𝑠𝑡 solving equation (23) temperature 𝑇𝑗 obtains 

the 𝑗 - component following (31), where 

𝑄𝑒𝑞 = ∑ 𝑄𝑖𝑘
𝑛
𝑘=1
𝑘≠𝑗

; 𝜓𝑗𝑒𝑞 = ∑ 𝜓𝑗𝑘
𝑛
𝑘=1
𝑘≠𝑗

; 𝜓𝑒𝑞𝛼 = ∑ 𝜓𝛼𝑘
𝑛
𝑘=1
𝑘≠𝑗

; 

𝐶𝑒𝑞 = ∑ 𝐶𝑘
𝑛
𝑘=1
𝑘≠𝑗

; 𝑇𝑒𝑞
𝑏 = ∑

𝜓𝑗𝑘

𝜓𝑗𝑒𝑞

𝑛
𝑘=1
𝑘≠𝑗

· 𝑇𝑘
𝑏; 𝑚1,2 =

1

2
· (𝐻1𝑗 ±

√𝐻1𝑗
2 − 4𝐻2𝑗); [1/h]; 𝐻1𝑗 =

𝜓𝑗𝑒𝑞+𝜓𝛼𝑗

𝐶𝑗+
𝜓𝑗𝑒𝑞+𝜓𝑒𝑞𝛼

𝐶𝑒𝑞

 ;[1/h]; 

𝐻2𝑗 =
𝜓𝑗𝑒𝑞

𝐶𝑗⋅𝐶𝑒𝑞
· (𝜓𝛼𝑗 + 𝜓𝑒𝑞𝛼 +

𝜓𝛼𝑗𝜓𝑒𝑞𝛼

𝜓𝑗𝑒𝑞
); [1/h2].  

Fig. 5 shows typical normalized regularities of the change 
in time of the machine parts’ temperature, which are 
obtained by dependence (23), based on the range and 
mutual ratio of growth rate and based on temperature 
values in the established mode for machine tools [7]. 

 
Fig. 5 Character of typical normalized change in time 

temperature of machine tool parts. 

It is evident that the typical pattern given in Fig. 5 a is typical 
for all cases of heating - cooling of parts and is a "quasi-
exponential" dependence. At the initial stage of heating, the 
function has an explicit concave nature with the point of 
inflection after some time. The exponential character of 
change in time, Fig. 5 b, regarding temperature of a detail 
occurs only at equality in expression (23) growth rates. 

𝑚𝑗 = 𝑚1𝑗 = 𝑚2𝑗 =
𝜓𝛼𝑗+𝜓𝑒𝑞𝛼

𝐶𝑗+𝐶𝑒𝑞
;   (32) 

and at 𝜓𝑗𝑒𝑞 → ∞, when the 𝜓𝑘𝑙 thermal conductance of the 

joints of the parts is quite high:  

 𝑇𝑗 = 𝑇𝑗
𝑏 + (

𝑄𝑒𝑞+𝑄𝑗

𝜓𝛼𝑗+𝜓𝑒𝑞𝛼
− 𝑇𝑗

𝑏) · (1 − 𝑒−𝑚𝑗𝑡) ;  (33) 

 
Fig. 6 Temperature model of vertical milling machine with 

heat-active elements I-XVIII and thermal links 1-60. 

Fig. 6 shows the diagram of temperature analysis for a 
vertical milling machine with indicated heat-active elements 
from I to XVIII and thermostable links. 
The solution of equation (23), depending on the 
requirements, can be obtained for different conditions of 
heat links accounting. The obtained temperature values are 
the basis for the solutions to determine the displacements 
in equations (7) and other related problems. 

5 THERMAL STIFFNESS AS A KEY ACCURACY 
INDICATOR  

Equation (7) is a mathematical expression of a generalized 
thermophysical structure, describing an arbitrary 
thermophysical structure of a metal cutting machine 
consisting of 𝑛 thermostable links built on 𝑖 =  𝑛 − 1 heat-

active elements. Based on equation (7) and (23) and on the 
analysis of variation ranges of geometrical and 
thermophysical parameters of machine tools, Fig. 7 shows 
graphs of varying normalized values of average non-

stationary temperatures 𝑇0(𝑡) and thermoelastic 
deformations 𝛿𝑟(𝑡) of machine tools. 

The graphs in Fig. 7 show different machine responses in 
the form of temperature variations and temperature 
deformations. The machine tools’ properties to resist 
(temperature stiffness) thermal influences are different, 
therefore, they should be described by different parameters 
of temperature stiffness estimation.  

a) 

b) 

Fig. 7 Typical normalized variations a) in average 

temperatures (1 - 3 types) 𝑇0(𝑡) and b) thermoelastic 

deformations 𝛿𝑟(t) (types 1-8) of machine tools. 

The indices of the machine’s general temperature and 
thermoelastic characteristics are to be defined, which will 
allow an estimation and change of the machine tool’s 
property to resist the thermal influences with the given 
sensitivity and accuracy. For simplicity, only the first two 

terms of the vector 𝛿𝑟 = |𝛿𝑟𝑥𝛿𝑟𝑦𝛿𝑟𝑧1|
𝑇
 of equation (7) are 

considered, and its projection on the coordinate axis. For 
example, a projection on the 𝑂𝑌 axis will result in the 

following: 

𝛿𝑟𝑦 = 𝐾1𝑀1𝑦𝛿𝑟1𝑦
0 + 𝐾2𝛿𝑟2𝑦

0 + 𝑀1𝑦(𝑩1𝑦
𝛼 )𝐼𝑟1𝑦 + (𝑩2𝑦

𝛼 )𝐼𝑟2𝑦 +

𝐾1𝑀1𝑦(𝑩1𝑦
𝛼 )𝐼𝛿𝑟1𝑦

0 + 𝐾2(𝑩2𝑦
𝛼 )𝐼𝛿𝑟2𝑦

0 = [(𝑀1𝑦 +

𝑀1𝑦(𝑩1𝑦
𝛼 )𝐼]𝐾1𝛿𝑟1𝑦

0 + (1 + (𝑩2𝑦
𝛼 )𝐼)𝐾2𝛿𝑟2𝑦

0 + 𝑀1𝑦(𝑩1𝑦
𝛼 )𝐼𝑟1𝑦 +

(𝑩2𝑦
𝛼 )𝐼𝑟2𝑦 = [(𝑀1𝑦 + 𝑀1𝑦(𝑩1𝑦

𝛼 )𝐼] · 𝐾1𝛿𝑟1𝑦
0 + (1 + (𝑩2𝑦

𝛼 )𝐼) ·
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𝐾2𝛿𝑟2𝑦
0 + 𝑀1𝑦(𝑩1𝑦

𝛼 )𝐼𝑟1𝑦 + (𝑩2𝑦
𝛼 )𝐼𝑟2𝑦 = {[(𝑀1𝑦 +

𝑀1𝑦(𝑩1𝑦
𝛼 )𝐼] + (1 + (𝑩2𝑦

𝛼 )𝐼) ·
𝐾2

𝐾1
·

𝑇2𝑟2𝑦

𝑇1𝑟1𝑦
+ 𝑀1𝑦(𝑩1𝑦

𝛼 )𝐼 ·
1

𝐾1𝛽𝑇1
+

(𝑩2𝑦
𝛼 )𝐼 ·

𝑟2𝑦

𝑟1𝑦
·

1

𝐾1𝛽𝑇1
} · 𝐾1𝛽𝑟1𝑦𝑇1 ;    (34) 

where 𝑀1𝑦 = (− sin 𝑥 sin 𝑦 cos 𝑧 + cos 𝑥 sin 𝑧) ·
𝛿𝑟1𝑥

0

𝛿𝑟1𝑦
0 +

sin 𝑥 sin 𝑦 sin 𝑧 + (cos 𝑥 cos 𝑧 − sin 𝑥 cos 𝑦) ·
𝛿𝑟1𝑧

0

𝛿𝑟1𝑦
0  ; (𝑩1,2𝑦

𝛼 )𝐼 =

[−𝛿𝛼𝑥𝛿𝛼𝑦 · (1 −
𝛿𝛼𝑧

2

2
) + (1 −

𝛿𝛼𝑥
2

2
)] · 𝛿𝛼𝑧

𝑟1,2𝑥

𝑟1,2𝑦
−

𝛿𝛼𝑧𝛿𝛼𝑥𝛿𝛼𝑦 + [(1 −
𝛿𝛼𝑦

2

2
) · (1 −

𝛿𝛼𝑧
2

2
) − 𝛿𝛼𝑥 (1 −

𝛿𝛼𝑦
2

2
)] ·

𝑟1,2𝑧

𝑟1,2𝑦
 ; 𝛼𝑒 =

𝑀𝑇

𝐸𝐽
+ 𝐶1 = 𝛽𝐾𝑐𝜁𝑇 ; 𝑒 = 𝑥, 𝑦, 𝑧 ; 𝜁𝑖 , [0 − 1] -  the 

coefficient of non-uniformity of temperature distribution of a 
heat-active element characterizes the non-uniformity of the 
temperature field in the cross-section, and if the 
temperature gradients in the directions and cross-section 
are close or equal, the values of  𝜁𝑖 → 1, 𝐾𝑐 – geometrical 

form factor in links is equal to 
𝑟𝑧

2

8𝑟𝑦
 for a free beam, 

𝑟𝑧
2

2𝑟𝑦
 for a 

one-side fixed beam.  

Analyzing the components of the expression (34), it is 
concluded that the matrix components are not 
thermophysical or mass-dimensional parameters and 
therefore, do not affect the thermal characteristics of the 
machine. Thus, in future analysis, this expression will be 
simplified by considering them as single matrices, and the 

product of the components (𝑩𝛼)𝐼𝛿𝑟0 are the values of 2, 3, 

4 orders of magnitude relatively.  In addition, 𝛿𝑟 has an 

insignificant effect on both the size and the temperature 
characteristics of the machine. Then the expression (34) 
will be simplified and documented.  

𝛿𝑟𝑦 = 𝐾1𝑀1𝑦𝛿𝑟1𝑦
0 + 𝐾2𝛿𝑟2𝑦

0 + 𝑀1𝑦(𝑩1𝑦
𝛼 )𝐼𝑟1𝑦 + (𝑩2𝑦

𝛼 )𝐼𝑟2𝑦 =

𝐾1𝛿𝑟1𝑦
0 + 𝐾2𝛿𝑟2𝑦

0 + (𝑩1𝑦
𝛼 )𝐼𝑟1𝑦 + (𝑩2𝑦

𝛼 )𝐼𝑟2𝑦 = 𝐾1𝛽𝑇1𝑟1𝑦 +

𝐾2𝛽𝑇2𝑟2𝑦 + (𝛿𝛼1𝑧 − 𝛿𝛼1𝑥) · 𝑟1𝑦 + (𝛿𝛼2𝑧 − 𝛿𝛼2𝑥) · 𝑟2𝑦 =

𝐾1𝛽𝑇1𝑟1𝑦 + 𝐾2𝛽𝜁1𝑦𝑇1𝑟2𝑦 + (𝛽𝐾𝑐𝜁1𝑧𝑇1 − 𝛽𝐾𝑐𝜁1𝑥𝑇1) · 𝑟1𝑦 +

(𝛽𝐾𝑐𝜁2𝑧𝜁1𝑦𝑇1 − 𝛽𝐾𝑐𝜁2𝑥𝜁1𝑦𝑇1) · 𝑟2𝑦 = [𝐾1 + 𝐾2𝜁1𝑦 ·
𝑟2𝑦

𝑟1𝑦
+

(𝐾1𝑐𝜁1𝑧 − 𝐾1𝑐𝜁1𝑥) + (𝐾2𝑐𝜁2𝑧𝜁1𝑦 − 𝐾2𝑐𝜁2𝑥𝜁1𝑦) ·
𝑟2𝑦

𝑟1𝑦
] ·

𝛽𝑇1𝑟1𝑦𝐾𝛽𝑗𝑇1𝑟1𝑦 = 𝐾𝜆𝑗 · 𝑇1 = 𝐾𝑇𝑗
−1 · 𝑇1 ;   (35) 

where 𝐾𝑖 - relative stiffness coefficient of a heat-active 

element at thermostable links; 

𝐾𝛽𝑗 = 𝛽 · [𝐾1 + 𝐾2𝜁1𝑦 ·
𝑟2𝑦

𝑟1𝑦
+ (𝐾1𝑐𝜁1𝑧 − 𝐾1𝑐𝜁1𝑥) +

(𝐾2𝑐𝜁2𝑧𝜁1𝑦 − 𝐾2𝑐𝜁2𝑥𝜁1𝑦) ·
𝑟2𝑦

𝑟1𝑦
]  - the given coefficient of 

temperature deformations of the machine [1/K]; 𝐾𝜆𝑗 =

𝐾𝛽𝑗𝑟1𝑦 - temperature elasticity coefficient [μm/K]; 𝐾𝑇𝑗 =
1

𝐾𝛽𝑗𝑟1𝑦
=

1

𝐾𝜆𝑗
 - temperature stiffness [K/μm]. 

Substituting the value of temperature (31) in expression 
(35) will result in the value of the machine’s thermoelastic 
deformation reduced to the first heat-active element, i.e., to 
the spindle of the machine at the TCP and at the time value 
𝑡 → ∞ , equation (34) will be changed to: 

𝛿𝑟𝑦 = 𝐾𝑇𝑗 · 𝑇1 = 𝐾𝑇𝑗 ·
𝑄𝑒𝑞+𝑄𝑗(1+

𝜓𝑒𝑞𝛼

𝜓𝑗𝑒𝑞
)

𝜓𝛼𝑗+𝜓𝑒𝑞𝛼(1+
𝜓𝛼𝑗

𝜓𝑗𝑒𝑞
)

= 𝐾𝑇𝑗 ·

(
𝑄𝑒𝑞

𝑄𝑗
)+(1+

𝜓𝑒𝑞𝛼

𝜓𝑗𝑒𝑞
)

𝜓𝛼𝑗+𝜓𝑒𝑞𝛼(1+
𝜓𝛼𝑗

𝜓𝑗𝑒𝑞
)

· 𝑄𝑗 = 𝐾𝜆𝑗 ·
𝜃𝑄+(1+

𝜓𝑒𝑞𝛼

𝜓𝑗𝑒𝑞
)

𝜓𝛼𝑗+𝜓𝑒𝑞𝛼(1+𝜓𝛼𝑗/𝜓𝑗𝑒𝑞)
· 𝑄𝑗 =

𝐾𝜆𝑗 · 𝐾𝛼𝑗 · 𝑄𝑗 = 𝐾𝑄𝑗
−1 · 𝑄𝑗;     (36) 

where 𝜃𝑄 =
𝑄𝑒𝑞

𝑄𝑗
  - the ratio of the machine’s internal heat 

sources to the source of the first heat-active element; 

𝐾𝛼𝑗 =
𝜃𝑄+(1+

𝜓𝑒𝑞𝛼

𝜓𝑗𝑒𝑞
)

𝜓𝛼𝑗+𝜓𝑒𝑞𝛼⋅(1+
𝜓𝑒𝑞𝛼

𝜓𝑗𝑒𝑞
)

  – heat stiffness [K/W]; 𝐾𝜃𝑗 =
1

𝐾𝛼𝑗
  

- heat elasticity [W/K]; 𝐾𝑄𝑗 = 𝐾𝑇𝑗 · 𝐾𝜃𝑗 =
1

𝐾𝜆𝑗
·

1

𝐾𝛼𝑗
  – 

thermal stiffness [W/µm].  

Heat, temperature, and thermal stiffness values of the 
machine are determined in the same way in other axial 
directions of OX and OZ since obviously, these stiffness 
values are different due to the thermophysical uniqueness 
of machine design and layout solutions. 

6 SUMMARY 

Heat-active elements form a thermophysical structure with 
the support of quasi-thermostable links in a kinematic chain. 
Thermophysical equations describe the heat flow by laws 
of conduction and convection and result in temperature 
changes. Heat-active elements change the linear sizes by 
thermoelastic deformations, and the inhomogeneity of 
temperature fields causes their angular rotation (bending). 
Heat stiffness, temperature stiffness, and thermal stiffness 
values of the machine are determined by the thermoelastic 
deformation 𝛿𝑟 between the TCP and the workpiece 

coordinate system, mechanical stiffness, preload, 
clearance, and non-uniformity in the coefficients of 
temperature. Examples of the thermal stiffness are given 
for several machine tool types. 
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