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This paper introduces an accelerated iterative Conjugate 
Gradient method (CG-method) for simulating the varying static 
receptance of a thin-walled workpiece. The proposed approach 
enhances computational efficiency by computing an optimal 
initial displacement guess for a given cutter location. This guess 
is based on the previously calculated displacement vector from 
the preceding cutter location, serving as the start iteration 
vector for the CG-method. The validation of efficiency gains 
through this method is demonstrated by a significant reduction 
in computation time for a numerical example. Moreover, to 
ensure the accuracy of the accelerated iterative CG-method, 
comparisons are made with the Cholesky method. The results 
confirm the precision of the proposed approach. 
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1 INTRODUCTION  

The CAM planning for thin-walled workpieces is a significant 
challenge [Koike 2013] [Wiederkehr 2013]. A challenging issue in 
this context is the occurrence of shape errors due to the large 
static receptance of the thin-walled workpiece [Altintas 2018] 
[Denkena 2007] [Dittrich 2019]. Traditionally, refining CAM 
planning involves numerous machining tests, with iterative 
process adjustments until suitable process parameters are 
determined [Bolar 2016]. Unfortunately, this approach results in 
considerable material wastage and time consumption [Bolar 
2016]. 
A potential solution lies in using finite element simulation to 
predict the static displacement of thin-walled workpieces, and 
enable the compensation of shape errors based on these 
predictions [Li 2018] [Ratchev 2005] [Wiederkehr 2013] 
[Wimmer 2019]. However, simulating thin-walled workpieces via 
finite element methods presents unique challenges due to the 
varying nature of the system stiffness matrix evolving with 
material removal. Furthermore, the process force fluctuates 
across different cutter locations. Because of the varying static 
stiffness and the fluctuating process force, multiple simulations 
are needed to calculate the varying workpiece displacement for 
one machining process. This leads to high computation costs, 
limiting the usage of the simulation methods to predict the 
displacement of thin-walled workpieces. 
To reduce the computation cost, a novel method is introduced 
for simulating the varying static receptance of thin-walled 
workpieces in previous work [Brecher 2023]. This method is 
based on the Cholesky method employing Cholesky 
decomposition [Bathe 2014] [Scott 2023]. By reusing the 

Cholesky factors, the novel method offers a more efficient 
solution to calculate the varying static stiffness of the 
intermediate states of a thin-walled workpiece. As shown in 
Fig. 1, the calculation of the static receptance at a single cutter 
location using this novel method consists of the following steps 
[Brecher 2023]:  
1. Detect the removed elements based on the cutter location, 

and update the system stiffness matrix of the workpiece. 
2. Identify the nodes in the search circle of the radius r around 

the tool center point. 
3. Define a concentrated static force fconcentrated with an 

arbitrary amplitude in any orthogonal direction. 
4. Distribute the concentrated force to multiple identical 

forces fdistributed on the nodes found at the first step. 
5. Solve Eq. 1 using a direct method based on Cholesky-

decomposition: 

K ∙ u = r (1) 

with: 

K: system stiffness matrix   
u: static displacement vector 
r: the load defined in step 3 expressed as 
column vector 

 

The Cholesky factor of the last cutter location is reused to 
reduce the computation time of u.  

6. Extract the displacements of the nodes identified in the 
second step and compute the average displacement.  

7. Compute the static receptance by  

gi,j =
uj

fi
 (2) 

with: 

i: direction of the force  

j: direction of the displacement  

gi,j: static receptance   

uj: average displacement in direction j  

fi: concentrated force in direction i  

 

 

Figure 1. Computation of the static receptance by using Cholesky 

method  
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It’s important to note, that solving eq. 1 requires the time-
consuming Cholesky decomposition of stiffness matrix K, which 
varies at each cutter location due to material removal. To reduce 
the time cost of step 5, the Cholesky factor of the previous cutter 
location is partly reused. However, this step is still the most time-
consuming part of the process [Brecher 2023]. An alternative to 
compute the displacement vector in step 5 is the iterative 
conjugate gradient method (CG-method). The CG-method 
consists of the following steps [Bathe 2014] [Hackbusch 2016] 
[Hestenes 1952]: 

 Choose a start iteration vector 𝑢0 (initial guess, 𝑢0 is 
typically a null vector). 

 Calculate the residual: 

𝑒0 = 𝑟 − 𝐾𝑢0 (3) 

 If the vector norm ‖𝑒0‖ is smaller than the convergence 
tolerance 𝜀: 

 The start iteration vector 𝑢0 is the solution, and the 
iteration process is stopped.  

 Else: 

 Set 𝑝0 = 𝑒0. 

 Calculate for 𝑠 = 0, 1, 2, …, 

𝛼𝑠 =
(𝑒𝑠)𝑇𝑒𝑠

(𝑝𝑠)𝑇𝐾𝑝𝑠 (4) 

𝑢𝑠+1 = 𝑢𝑠 + 𝛼𝑠𝑝𝑠 (5) 

𝑒𝑠+1 = 𝑒𝑠 − 𝛼𝑠𝐾𝑝𝑠 (6) 

𝛽𝑠 =
(𝑒𝑠+1)𝑇𝑒𝑠+1

(𝑒𝑠)𝑇𝑒𝑠  (7) 

𝑝𝑠+1 = 𝑒𝑠+1 + 𝛽𝑠𝑝𝑠 (8) 
The for loop between Eq. 4 and Eq. 8 is a process to iteratively 
update 𝑢. This update process continues until the vector norm 
‖𝑒𝑠+1‖ <  𝜀, signifying the fulfillment of the convergence 
criterion. 
The CG-method's efficiency is tied to its convergence rate, 
having a direct impact on computation time. The inherent 
drawback of the CG-method lies in the possibility for slow 
convergence, leading to high computation time. However, it's 
important to note that this drawback is counterbalanced by the 
method's ability to be highly efficient when convergence occurs 
rapidly. In instances where the CG-method converges rapidly, it 
can markedly outperform the Cholesky-method, resulting in 
significantly reduced computation time. 
In summary, during the machining process, material removal 
causes the system stiffness matrix of the workpiece to vary. This 
variation can be accounted for by subtracting the elemental 
stiffness matrix of the removed material from the initial system 
stiffness matrix [Brecher 2023]. As a result, the static stiffness 
changes at each cutter location. The unique challenge is to solve 
the varying static stiffness at each cutter location efficiently and 
accurately.  
This paper primarily seeks to enhance the convergence rate of 
the CG-method in simulating thin-walled workpieces. Following 
this introductory section, section 2 outlines a strategy for 
augmenting the convergence rate by generating an effective 
initial guess within the CG-method. Subsequently, section 3 
systematically evaluates both the efficiency and accuracy of the 
CG-method. The concluding section encapsulates key findings 
and outlines future perspectives. 

2 ACCELERATION OF THE CG-METHOD BY USING A GOOD 
INITIAL GUESS 

Examining Eq. 3, it is observed that the CG-method achieves 
convergence in a single iteration if the initial guess is identical to 
the real displacement vector. This observation leads to the 
following hypothesis: 

 Hypothesis 1: The convergence rate of the CG-method can 
be increased by minimizing the disparity between the initial 
guess and the accurate displacement vector. 

Assuming the validity of this hypothesis, the convergence rate of 
the CG-method to simulate an intermediate state q of a thin-
walled workpiece can be increased by using the following 
process: 

 Generate an initial guess u𝑞
0  by selecting entries from uq−1.  

The chosen entries correspond to the common DoF of 
meshes q and q-1. 

 Solve the displacement vector uq using the generated initial 

guess u𝑞
0  

This process is illustrated in Fig. 2, where each node has a DoF in 
horizontal direction. Mesh q-1 comprises 20 nodes and 20 
corresponding DoF. The displacement vector uq−1 ∈  ℝ20×1 is 

known from a prior simulation. Mesh q is derived by removing 
element E1 from the mesh q-1, resulting in the deletion of nodes 
N1 and N20. The entries in uq−1  corresponding to the remaining 

nodes are selected to generate an initial guess u𝑞
0 ∈  ℝ18×1 for 

mesh q. This initial guess is employed as the start iteration vector 
to calculate uq ∈  ℝ18×1. Given the small difference between 

meshes q and q-1, along with similar external loads, u𝑞
0  is 

expected to be a reliable approximation of the accurate 
displacement vector uq, facilitating a high convergence rate for 

the CG-method in mesh q. 

 

Figure 2 : Generation of an optimal initial guess for CG-method 

It's crucial to acknowledge that the method for generating a 
good initial guess for mesh q utilizes the calculated displacement 
vector of the previous mesh as input. Consequently, this method 
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is not applicable to the first mesh. Addressing this special case 
for the first mesh and the normal case for the other meshes, the 
full process to calculate displacement vectors for all 
intermediate meshes of a thin-walled workpiece involves the 
following steps: 

 Calculate the displacement vector u1 for 𝑞 = 1 (first mesh) 
with a null vector as the initial guess, using standard CG-
method. 

 For 𝑞 = 2, … , 𝑄 − 1, 𝑄, where Q is the total number of the 
intermediate meshes: 

 Update the system stiffness matrix by subtracting the 
elemental stiffness matrix of the removed material 
from the initial system stiffness matrix.  The size of the 
system stiffness matrix is not limited. 

 Generate the initial guess 𝑢𝑞
0 based on uq−1.  

 Calculate uq using CG-method with the generated 

initial guess 𝑢𝑞
0.  

The presented section introduces a concise approach to 
generating a proficient initial guess for the CG-method in 
simulating thin-walled workpieces. The subsequent section 
evaluates the efficiency and accuracy of the CG-method when 
employing this well-generated initial guess, demonstrated 
through a numerical example. 

3 NUMERICAL TEST 

In this section, the method introduced in the previous section is 
evaluated through a numerical example involving the flank 
milling of a thin-walled workpiece, as illustrated in Fig. 3. The 
initial mesh of this workpiece comprises 236,715 tetrahedron 
elements and 47,489 nodes. This specific numerical example has 
been employed in prior research to validate the novel Cholesky 
method [Brecher 2023]. In the prior research, the removed finite 
elements were detected for 47 cutter locations (CLs). These 47 
CLs are uniformly distributed along the tool path, with a 
consistent spacing of 2 mm between any two adjacent CLs. 
Furthermore, the system stiffness matrix is updated for these 

CLs by subtracting the elemental stiffness matrices of the 
removed elements from the initial system stiffness matrix. The 
static receptance at these 47 CLs is calculated using an 
accelerated Cholesky method [Brecher 2023]. To facilitate a 
meaningful comparison, the static receptance is computed for 
these 47 cutter locations (CLs) using the newly proposed 
accelerated CG-method outlined in the preceding section.  

The computation times for the receptance at each CL are 
detailed in Fig. 4. 

Utilizing the CG-method with a well-generated initial guess 

based on the displacement vector of the previous CL results in 
an average computation time of 8.2 s. In contrast, without 
employing the good initial guess, the average computation time 
with the CG-method rises is 16 s. Moreover, the average 
computation time of 8.2 s is significantly shorter than the 
average computation times of 33.3 s and 63.1 s when employing 
the Cholesky-method, irrespective of reusing or not reusing the 
Cholesky-factor. This difference underscores a substantial 
efficiency enhancement achieved by employing the CG-method 
with an initial guess generated by the method introduced in the 
previous section. The significant efficiency improvement 
observed confirms the hypothesis presented in the last section. 

The accuracy of the novel Cholesky-method has already been 
validated in prior research through machining test and 
simulation with commercial software [Brecher 2023], making 
the static receptance computed by the Cholesky-method a 
reliable reference. Compared to the Cholesky-method, the CG-
method is an iterative method. As a result, the CG-method can 
have the same accuracy as the Cholesky-method, only when the 

convergence tolerance 𝜀 (explained in introduction) is equal 0. 
However, the convergence tolerance 𝜀 is typically larger than 0, 
in order to have a high convergence rate. In this example, the 
convergence tolerance 𝜀 is set to 0.01. Hence, it becomes 
necessary to assess the accuracy of the CG-method by 
comparing the calculated static receptances using both the CG-
method and the Cholesky-method. This comparison is illustrated 
in Fig. 5. The errors of the CG-method for all the CLs fall within a 
small range between -0.5 % and 0.7 %. This proves the accuracy 
of the CG-method. 

4 CONCLUSIONS 

This paper introduces a concise and efficient approach for 
simulating the varying static receptance of thin-walled 
workpieces, using an accelerated iterative CG-method. The 
method's efficiency is notably enhanced by generating a good 
initial guess based on the simulated displacement vector of the 
preceding CL. Comparative analysis demonstrates its 
outstanding efficiency compared to the Cholesky-method, while 
maintaining the same level of accuracy. The combination of high 
efficiency and good accuracy of this novel approach makes it 
well-suited to optimize the machining processes of thin-walled 
workpieces.  

In future work, the method will be applied to real workpieces 

Figure 3. Numerical example for testing the accelerated CG-method 

Figure 4: Time to compute the varying static receptance of the thin-
walled workpiece  
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during CAM planning to validate its efficiency and accuracy 
under practical conditions. Furthermore, an efficient method for 
predicting the varying dynamic characteristics of thin-walled 
workpieces will be researched. 

 

Figure 5: Error of the CG-method for computing the varying static 
receptance of the thin-walled workpiece 
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