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Artificial Intelligence (AI) and its applications in modern industry, 
particularly in additive manufacturing (AM), have garnered 
significant attention from both researchers and industry 
professionals. In recent years, the rise of generative AI (GenAI) 
models, marked by the launch of ChatGPT in 2022, has driven an 
unprecedented shift in industry practices and workforce 
dynamics. This paper investigates the current state of research 
at the intersection of GenAI and AM, while also exploring future 
directions. By conducting a keyword search across four major 
databases (Web of Science, Scopus, IEEE Xplore, and 
ScienceDirect), we collected 272 papers. Through an in-depth 
evaluation of these papers, we identified five primary themes 
shaping GenAI applications in AM: AM process optimization, 
generative design, data & quality, design workflow, and 
applications. This paper also provides a detailed analysis of each 
category, offering valuable insights into the evolving role of 
GenAI in AM. 
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1 INTRODUCTION 

Recent years have witnessed the integration of additive 
manufacturing (AM) technology into various industries [Blasiak 
2024]. Commonly referred to as 3D printing, AM has 
revolutionized traditional manufacturing processes by adding 
material layer by layer to fabricate three-dimensional objects. 
This technology offers unparalleled design freedom and 
customization for components in several sectors, such as 
aerospace, healthcare, and automotive [Srivastava 2024, 
Rezvani 2021, Vasco 2021]. By using material only where it is 
needed, AM enables rapid prototyping and minimizes waste, 
enhancing both sustainability and efficiency. As adoption grows, 
industries are increasingly leveraging AM to shorten supply 
chains, reduce lead times, and localize production. Furthermore, 
with ongoing advancements in materials and processes, AM 

continues to redefine the future of manufacturing on a global 
scale. 
 
Despite the growing adoption of AM technologies and the 
emergence of GenAI, several critical gaps exist in current 
research that limit our understanding and implementation of 
these technologies. First, while preliminary implementations of 
AI in AM have demonstrated efficacy within Industry 4.0, 
particularly in tasks such as process optimization, defect 
detection and monitoring [Ma 2024, Wang 2020], the 
manufacturing sector lacks a systematic framework for 
evaluating and implementing GenAI across AM workflows. This 
methodological gap poses significant challenges for industrial 
adoption and academic advancement in two key areas: 
1. Quality Assurance and Validation 
- Limited understanding of GenAI's reliability in quality-critical 
applications 
- Absence of standardized validation protocols for AI-generated 
designs 
- Insufficient research on long-term stability of GenAI-optimized 
processes 
- Lack of comprehensive frameworks for certifying AI-generated 
components 
2. Process Integration and Optimization 
- Fragmented approaches to implementing GenAI across 
different AM stages 
- Limited research on real-time process control and adaptation 
- Insufficient studies on scalability across different 
manufacturing environments 
- Inadequate integration between design optimization and 
manufacturing constraints 
 
This research aims to provide a comprehensive systematic 
review of the intersection between GenAI and AM technologies, 
with three specific objectives: 
1. To systematically analyze and synthesize current 
implementations of GenAI across different AM processes and 
applications 
2. To critically evaluate the empirical evidence for benefits and 
limitations of GenAI integration in AM 
3. To identify key research gaps and future directions for 
advancing GenAI in AM 
 
To achieve these objectives, we address four specific research 
questions: 
RQ1: What are the primary applications and implementation 
patterns of GenAI in AM processes, and how have they evolved? 
RQ2: What quantifiable benefits and limitations have been 
demonstrated in GenAI-AM integration across different 
manufacturing contexts? 
RQ3: How do current GenAI implementations in AM address 
technical challenges in: 
   a) Process optimization and control 
   b) Quality assurance and defect detection 
   c) Design automation and customization 
RQ4: What are the critical technical, economic, and 
implementation gaps in current GenAI-AM research that need to 
be addressed for broader industrial adoption? 
 
Our findings contribute to both theoretical understanding and 
practical implementation of GenAI in AM, informing researchers, 
manufacturers, and industry practitioners. The results provide 
valuable insights into successful implementation strategies, 
potential challenges, and future research directions in this 
rapidly evolving field. 
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2 METHODOLOGY 

 
Search Strategy 
This study traces the comprehensive development of Generative 
AI (GenAI) in AM from its inception through January 2025. The 
investigation commenced with an unrestricted temporal search 
of relevant literature across selected databases, enabling 
thorough documentation of the field's evolution. This 
methodological approach allowed us to track the progression 
from early computational techniques through to contemporary 
advanced applications.  
To ensure comprehensive coverage of both foundational works 
and recent developments, we conducted systematic searches 
across multiple academic databases: Web of Science, Scopus, 
IEEE Xplore, and Science Direct. 
To facilitate a systematic review of the literature, we developed 
the following comprehensive search string: 
("generative AI" OR "GenAI" OR "large language model*" OR 
"GPT" OR "ChatGPT" OR OR "generative model*" OR "generative 
algorithm*") 
AND 
("additive manufacturing" OR "3D print*" OR "rapid 
prototyping" OR "AM technology" OR "additive layer 
manufacturing" OR "direct digital manufacturing") 
To ensure a comprehensive yet focused analysis of the current 
literature on GenAI applications AM, we have clearly established 
selection criteria. These criteria include peer-reviewed research 
articles written in English, with a particular focus on journal 
publications and conference proceedings to maintain scientific 
rigor and accessibility of the literature. Furthermore, we include 
studies demonstrating the application of GenAI in AM, with a 
focus on practical results and theoretical frameworks. This focus 
ensures that the findings presented fit into the broader context 
of the role of AI in today’s advanced manufacturing industry. 
Papers were required to present clear methodologies, 
documented results, or theoretical contributions to the 
understanding of GenAI in AM contexts. Conversely, we 
excluded non-peer-reviewed materials, gray literature, and 
publications without clear methodological approaches. Studies 
focusing solely on traditional AI methods without generative 
components were omitted, as were duplicated publications and 
those lacking substantial contribution to the understanding of 
GenAI's role in AM. This systematic approach ensured the 
capture of relevant, high-quality research while maintaining the 
review's focus on contemporary GenAI applications in AM. 
 
Data Extraction 
A comprehensive data extraction form was developed to 
systematically collect and analyze information from the selected 
literature. The form comprises four key sections, i.e., Publication 
Details, Study Characteristics, Technology Implementation, and 
Results. 

 
Quality assessment method 
In this study, quality assessment was conducted through a 
differentiated evaluation framework for both journal articles 
and conference papers, acknowledging their distinct 
characteristics and contributions to the field. 
With regard to journal articles (0-30 points), the assessment 
criteria comprised: 

 Research methodology (0-5 points) 

 Theoretical foundation (0-5 points) 

 Data analysis and validation (0-5 points) 

 Result interpretation (0-5 points) 

 Impact and implications (0-5 points) 

 Overall quality of presentation (0-5 points) 
In terms of conference papers (0-30 points), the evaluation 
focused on: 

 Technical innovation (0-7 points) 

 Implementation quality (0-7 points) 

 Experimental validation (0-6 points) 

 Result presentation (0-5 points) 

 Future research implications (0-5 points) 
To minimize subjective bias and ensure reliability, we 
implemented several measures: 

1. Dual Review Process: 

 Two independent reviewers evaluated each paper 
using the standardized assessment framework 

 Cohen's Kappa coefficient was calculated to measure 
inter-rater reliability (achieving 0.82) 

 Discrepancies were resolved through structured 
discussion and consensus-building 

2. Standardized Assessment Protocol: 

 Detailed scoring rubrics were established for each 
criterion 

 Regular calibration sessions between reviewers 
ensured consistent interpretation 

 Documentation of assessment rationale was required 
for each paper 

The rationale behind this differentiated scoring system stems 
from the recognition that while conference papers may contain 
less extensive methodology sections, they often present 
significant technical innovations and implementation details 
that are particularly pertinent to emerging GenAI applications in 
AM. To ensure comparability, the total possible score was 
maintained at 30 points for both types, while taking into account 
their different strengths. Based on the scoring criteria, papers 
were classified into three quality levels: high quality (24-30 
points), medium quality (16-23 points), and low quality (below 
16 points), regardless of the publication type. 
Despite these comprehensive measures, we acknowledge 
certain limitations in the assessment process: 

 Reviewer expertise and background may influence 
interpretation 

 Different reviewers might emphasize different aspects 
of quality based on their experience 

 The rapid evolution of GenAI technology may affect 
how quality is perceived over time 

3 RESULTS 

3.1 Study Selection Process 

Following the PRISMA (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses) guidelines [Page 2021], we 
documented our systematic search and screening process in 
detail (Figure 1). The initial database search yielded 272 records 
distributed across multiple electronic databases: Scopus 
(n=139), Web of Science (n=66), IEEE (n=27), PubMed (n=14), 
and ScienceDirect (n=26). 

The screening process proceeded through several stages: 

1. Identification: After removing 151 due to duplicate 
and unrelated, 121 unique records remained for 
screening 

2. Screening & Eligibility: From the remaining 121 
records, 81 were excluded after abstract review 

3. Full-text assessment: Of the 40 articles identified for 
full-text retrieval, 5 were inaccessible despite author 
contact attempts 
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4. Final inclusion: After evaluating 35 full-text articles, 10 
were excluded due to insufficient contribution to the 
research questions, resulting in 25 studies meeting all 
inclusion criteria 

Figure 1 presents the PRISMA flow diagram illustrating this 
systematic selection process, providing transparency and 
reproducibility in our methodology. Each exclusion decision was 
documented with specific reasons, ensuring a rigorous and 
systematic approach to study selection. 

 
 

Figure 1. PRISMA flow diagram of study selection process 

 
3.2 Thematic Analysis  

The integration of GenAI into material design represents a 
transformative shift in the field, introducing novel approaches 
for design optimization, process automation, and creative 
problem-solving. Through systematic analysis of current 
research and applications, five distinct themes emerge that 
characterize the fundamental ways in which GenAI is reshaping 

AM processes as shown in Figure 2. 

 

Figure 2. Thematic map of GenAI applications in AM 

1. Generative Design of Materials and Structures 

The evolution of generative design in materials and structures 
represents a significant advancement in AM, fundamentally 
transforming how we approach material development and 
structural optimization. This transformation spans multiple 
domains, from novel material creation to sophisticated 
mechanical property optimization, demonstrating the profound 
impact of artificial intelligence on manufacturing innovation. 

In the field of new materials design, GenAI-driven approaches 
have demonstrated remarkable potential. For example, a study 
investigated the design of composite mechanical metamaterials 
using Variational Autoencoder and Bayesian optimization [Xue 
2020]. This research made a significant contribution to our 
understanding of how machine learning (ML) techniques can 
automate complex material design processes. Building on this 
foundational work, subsequent studies have developed 
sophisticated approaches for 3D-printed steel using probabilistic 
mechanics and uncertainty quantification model [Dodwell 
2021]. These investigations have conclusively shown the ability 
to predict both geometric and mechanical variations in wire and 
arc AM processes. 

A significant development in this field has been the employment 
of Generative Adversarial Networks (GANs) to facilitate the 
creation of new materials with unique properties, such as 
auxetic behavior and innovative 3D printing formulations 
[Elbadawi 2024]. Of particular significance, research conducted 
by Elbadawi et al. has demonstrated exceptional progress in 
automating material formulation. Their findings revealed that 
the study successfully generated 270 novel formulations for 
Fused Deposition Modeling (FDM) printing, with empirical 
validation confirming that four compositions exhibited optimal 
printability. The study successfully generated 270 novel 
formulations for FDM printing, with four experimentally 
validated compositions demonstrating optimal printability 
[Elbadawi 2024]. Moreover, these AI-generated formulations, 
which incorporated materials such as Klucel® EF and various 
polymers, have made a substantial contribution to expanding 
the possibilities for printable materials while achieving 
significant reductions in development time and costs.  

An advancement in the field of metamaterial design has 
emerged alongside these material innovations.  For example, a 
study demonstrated the creation of mechanical metamaterials 
with programmable compression-twist coupling through 
generative algorithms [Goswami 2020]. The findings revealed 
that these materials exhibited remarkable versatility, achieving 
significant results with Poisson's ratios ranging from -0.6 to 
+1.22, while maintaining size-independent properties. Through 
the implementation of automated design processes utilizing 
Voronoi tessellations, researchers have made substantial 
progress in bridging the gap between theoretical design and 
practical fabrication, thus creating new opportunities for 
applications in soft robotics and biomedical devices. 

In the field of biomimetic structures, a study has demonstrated 
the efficacy of deep learning (DL) for modeling and designing 
heterogeneous hierarchical spider web structures [Lu  2023]. 
The findings revealed that this approach successfully achieved 
the generation of complex web structures with high accuracy, 
thus providing compelling evidence of AI's potential in creating 
nature-inspired designs. These principles have been further 
developed in research on architected tunable twist-compression 
coupling metastructures  [Iranmehr 2024], which demonstrated 
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the critical influence of geometrical parameters on mechanical 
properties and energy absorption capacity. 

Recent developments in lattice structure design have witnessed 
substantial evolution through AI integration. A notable study by 
Eren et al. [Eren 2024] employing 3D Generative Adversarial 
Networks (3DGAN) has demonstrated remarkable 
improvements in mechanical properties, with empirical 
evidence showing significant enhancements in energy 
absorption and extension capacities. These advances have been 
further extended through the development of Generative Lattice 
Units with 3D Diffusion [Jadhav 2024], which facilitates inverse 
design by taking desired mechanical properties as inputs and 
generating optimal lattice structures efficiently. 

Furthermore, the optimization of mechanical properties through 
GenAI has achieved unprecedented levels of sophistication. For 
example, the Deep-DRAM model, introduced by a study 
[Pahlavani 2024], achieved unprecedented accuracy in 
predicting anisotropic elastic properties, with correlation 
coefficients exceeding 0.99. This significant breakthrough has 
facilitated the creation of structures with previously 
unattainable properties, such as double-auxeticity, while 
maintaining practical manufacturability. While these 
developments represent a significant step forward in designing 
materials with precisely tailored mechanical characteristics, it is 
important to note that challenges in manufacturing resolution 
and size-dependent variations remain unresolved. 

2. Optimization of Additive Manufacturing Processes 

In recent years, GenAI models have revolutionized G-code 
generation by creating optimized instructions for specific 
materials, printers, and objects. A study by Badini et al.   
demonstrated ChatGPT's effectiveness in optimizing G-code for 
TPU materials [Badini 2023]. The findings revealed that AI-
generated G-code significantly improved print quality and 
reduced common issues like warping and stringing. Of particular 
importance is the AI system's ability to generate optimized G-
code, which represents a substantial advancement over 
traditional manual programming methods. Through the analysis 
of material properties and printer specifications, the AI has 
demonstrated the capability to create more efficient printing 
instructions.  This development has been further enhanced 
through the introduction of AMGPT (Chandrasekhar et al., 2024), 
a specialized large language model (LLM) that has been shown 
to improve response accuracy over GPT-4 and reduce 
hallucination in technical guidance. Although the integration of 
AI in medical 3D printing [Sriwastwa 2023] has shown promising 
results, outputs often require expert validation for clinical 
applications. These advances are supported by extensive 
research on human-machine interfaces [Jasche 2023] and code-
based modeling tasks [Zichar 2024]. 

Building upon these developments, parameter optimization 
through AI has emerged as another critical advancement in AM. 
Notable research, including the development of the GPyro 
model [Sideris 2023] and DL applications in mechanical 
metamaterials design [Pahlavani 2024], has demonstrated 
exceptional accuracy in predicting and optimizing various 
printing parameters. Of particular significance is the 
achievement of R² values exceeding 0.99 in predicting 
anisotropic elastic properties, as reported in the study on size-
agnostic inverse design. Additionally, the GenAI-based system 
can handle multiple parameters simultaneously, taking into 

account the interactions between temperature, velocity, and 
material flow. While this approach has proven particularly 
effective when working with novel materials or complex 
geometries, it remains challenging to manage the computational 
complexity and ensure high data quality. This advancement has 
been complemented by innovative work in textile manufacturing 
[Wirth 2023], where multi-stage mechanical characterization 
has enabled the successful fabrication of complex biaxial weaves 
with reduced layer interactions. 

Furthermore, the implementation of real-time optimization 
capabilities through GenAI represents a significant advancement 
in contemporary AM. The evidence from the GPyro study [Sideris 
2023] has demonstrated particularly promising results in this 
area. These capabilities are enhanced through research on 
propagation using generative models [Ballagas 2019], which 
explored new ways to interact with AI-enabled design systems. 
While these approaches enable immediate adjustments during 
printing, it should be noted that challenges persist in managing 
model stability and user interface complexity. 

The field has also witnessed progress in materials processing and 
quality control. Research conducted by Dodwell et al. [Dodwell 
2021] has demonstrated the effectiveness of probabilistic 
modeling in predicting geometric variations, while subsequent 
work in lattice structure optimization [Jadhav 2024] has 
demonstrated the potential for automated design systems to 
achieve specific mechanical properties. These advances are 
valuable when working with new materials and complex 
geometries, although challenges remain in managing 
computational complexity and ensuring data quality. 

3. Data Augmentation and Anomaly Detection 

Manufacturing environments face a significant methodological 
challenge due to imbalanced datasets, where operational data 
significantly outweighs anomalous instances. Recent research 
has shown promising solutions to this challenge through 
innovative applications of GenAI. Notably, a study [Kim 2023] 
implementing StyleGAN-based data augmentation successfully 
improved the imbalance ratio from 5 to 1, utilizing multivariate 
time-series sensor data from CNC milling machines and WAAM 
welding processes. This advancement in addressing data 
imbalance is particularly valuable for industries where collecting 
defect data is both costly and time-consuming.  

Furthermore, generative models have shown remarkable 
capabilities in generating realistic defect data to train more 
robust quality control systems. This is evidenced by the study of 
Fang et al., which achieved an impressive 98% detection 
accuracy using Yolov5 models for identifying defects in metal 
powders, particularly in sphericity detection from SEM images 
[Fang 2023]. The ability to generate synthetic but realistic defect 
data represents a major advancement, especially in the context 
of high-precision manufacturing where real defect samples are 
rare and expensive to obtain.  This has been complemented by 
improvements in measurement strategies [Wang 2018], which 
combine low- and high-resolution measurement data to improve 
accuracy while reducing the reliance on expensive high-precision 
systems. 

Furthermore, integrating generative modeling with anomaly 
detection systems has yielded promising improvements in both 
accuracy and reliability. In particular, a recent study [Zheng 
2024] introduced the Generative Convergence Model , which 
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achieved exceptional results with an F1 score exceeding 90h% 
and an average size error of less than 0.1 nm. The model showed 
remarkable performance, performing analysis 100 times faster 
than traditional manual counting methods. This significant 
improvement in accuracy is due to the combination of advanced 
generative models and anomaly detection algorithms, resulting 
in a more robust and reliable quality control system. 

4. AI-Driven Design Workflows 

AI-Driven Design Workflows have fundamentally transformed 
AM processes through automated design workflows and 
sophisticated data integration approaches. Recent research 
demonstrates significant advances in automated design 
solutions that optimize complex processes. For instance, the 
research [Ricotta 2020a] documented how a novel generative 
algorithm incorporating Voronoi partitions into CAD models 
achieved substantial reductions in design complexity while 
enhancing product reliability. This advancement has particular 
relevance for medical applications, specifically in the precise 
design requirements of customized orthopedic devices. 

The evolution of data-driven frameworks represents another 
crucial development in this domain. A significant study [Jiang 
2022] demonstrated the efficacy of Generative Adversarial 
Networks (GANs) in synthesizing multiple data streams to 
enhance design automation and personalization capabilities.  
Their implementation of GANs, focusing on shape synthesis and 
IoT integration, yielded significant improvements in product 
customization, as evidenced in applications such as bicycle 
saddle design. This approach effectively addresses the critical 
challenge of reconciling human-directed design with 
personalized manufacturing requirements.. 

Furthermore, The integration of diverse data modalities has 
yielded substantial improvements in design outcomes. A 
research [Eren 2024] demonstrated that incorporating 
additional parameters, including Von Mises stress thresholds 
and volumetric constraints, resulted in marked improvements in 
CAD modeling efficiency. The field has also seen significant 
advances in biomimetic design, with studies on spider web 
structures [Lu 2023] demonstrating how DL can be used to 
generate complex, nature-inspired architectures. 

In CAD modeling, the development of specialized prototyping 
algorithms has revolutionized conventional methodologies. 
Ricotta et al. conducted research on textile structure production 
using advanced 3D printing techniques, demonstrating how 
algorithms developed through Grasshopper can overcome 
traditional limitations in flexible structure production [Ricotta 
2020b]. This advancement holds particular significance for 
orthopedic applications, specifically in the production of elbow 
support structures requiring precise and adaptive design 
characteristics. These implementations effectively demonstrate 
the feasibility of developing sophisticated custom designs while 
mitigating common manufacturing challenges such as warping 
and misalignment.. 

5. Applications of GenAI in AM 

Recent advances in the integration of GenAI in AM have led to 
transformative developments across various sectors, with 
particularly noteworthy advancements in healthcare 
applications. In the realm of personalized medicine, a research 

has demonstrated remarkable progress in the development of 
customized medical devices [Ricotta 2020a]. Specifically, 
through the implementation of generative algorithms and 
Selective Laser Sintering (SLS) using PA 2200 polyamide material, 
the researchers successfully produced orthopedic prototypes 
with integrated Voronoi slices. This approach not only 
overcomes the limitations of traditional designs but also 
establishes a new paradigm for patient-specific healthcare 
solutions 

The pharmaceutical sector has experienced remarkable progress 
through AI-enabled drug development methodologies. A recent 
investigation by Elbadawi et al. 2024 demonstrated that 
Conditional GANs successfully produced 270 novel formulations, 
with four specifically validated for FDM printing [Elbadawi 2024]. 
In parallel, bioprinting technology has advanced significantly 
through computational integration. Research has validated the 
successful combination of computational modeling with 
bioprinting techniques, employing various hydrogels including 
PEGDA, alginate, and collagen [Duarte 2021].  

In the industrial sector, particularly aerospace and automotive 
applications, GenAI has substantially enhanced the design and 
production of high-performance components. For example, Eren 
et al. employed 3DGAN to achieve remarkable improvements in 
mechanical properties, including a 57% increase in normalized 
energy absorption and 26% enhancement in extension 
capacities for aluminum alloy lattice structures [Eren 2024]. This 
methodology enabled researchers to develop high-strength, 
customized structures while reducing material consumption and 
manufacturing costs. 

These findings demonstrate that GenAI has fundamentally 
transformed manufacturing processes across multiple sectors, 
from medical devices to industrial components, establishing 
innovative approaches to design, optimization, and production 
in AM. 

4 DISCUSSION 

4.1 Key Findings and Evidence Quality 

The systematic review, analyzing 25 primary studies from 2018-
2025, reveals compelling patterns in the integration of GenAI 
with AM. A notable trend emerges in the increasing 
sophistication of AI models, progressing from basic generative 
algorithms to more advanced architectures like Deep-DRAM and 
3DGAN. The accuracy levels achieved in recent studies, 
particularly in predicting material properties and defect 
detection, significantly surpass earlier implementations. This 
progression suggests a maturation of the field beyond proof-of-
concept studies toward industrial-grade solutions. 

The varying levels of evidence quality across domains can be 
attributed to several factors. Materials design and process 
optimization demonstrate superior evidence quality through 
quantifiable metrics (R² > 0.99 in property prediction [Pahlavani 
2024], 98% defect detection accuracy [Fang 2023]) and 
experimental validation (4 validated formulations from 270 AI-
generated options [Elbadawi 2024]). These domains benefit 
from standardized testing protocols and reproducible 
methodologies. In contrast, human-AI interaction and real-time 
optimization studies show lower evidence quality due to 
interface complexity variations, limited standardization in 
evaluation methods, and fewer quantitative performance 
measures. For example, while AMGPT showed improved 
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accuracy over GPT-4 [Chandrasekhar 2024], the evaluation 
metrics vary across studies, making systematic comparison 
challenging. This disparity highlights the need for standardized 
evaluation frameworks, particularly for human-AI interaction 
studies. 

4.2 Research Gaps and Implementation Barriers 

Critical analysis of the findings reveals varying levels of evidence 
quality and practical implementation success across different 
domains. The strongest evidence exists in materials design and 
process optimization, where multiple high-quality studies 
demonstrate quantifiable improvements. For instance, studies 
utilizing cGANs successfully generated 270 novel formulations 
with four experimentally validated compositions, while GPyro 
models achieved accurate temperature predictions without 
error accumulation in WAAM processes. However, the evidence 
for human-AI interaction and real-time optimization capabilities, 
while promising, shows more varied results. Studies of ChatGPT 
and AMGPT reveal both potential and limitations, with AMGPT 
showing improved accuracy over GPT-4 but still facing challenges 
in specialized technical contexts. 

Several critical research gaps emerge from this analysis. First, 
while 19 of the 25 studies focus on technical performance 
metrics, only 3 studies address the economic implications and 
scalability of GenAI solutions in industrial settings. Second, long-
term reliability studies are notably absent, with most research 
reporting short-term performance metrics. The data also reveals 
a geographical and technological bias, with most studies 
conducted in advanced economies using high-end equipment, 
limiting generalizability to broader manufacturing contexts. 
Furthermore, standardization in evaluation methods varies 
significantly across studies, making direct comparisons 
challenging. 

The limited availability of long-term reliability studies presents a 
significant barrier to industrial GenAI adoption in AM. Only 2 out 
of 25 reviewed studies conducted evaluations beyond six 
months, creating uncertainty about long-term performance 
stability. This gap affects industrial implementation in three 
critical ways: 

 Risk Assessment: Companies lack sufficient data to 
evaluate long-term risks and returns on investment. 
While studies show immediate benefits like  
improvement in energy absorption [Eren 2024] and  
faster quality control [Zheng 2024], the sustainability 
of these improvements remains unverified. 

 Quality Assurance: Manufacturing industries, 
especially aerospace and medical devices, require 
extensive validation before adopting new 
technologies. The absence of long-term reliability data 
complicates regulatory compliance and quality 
certification processes [Ricotta 2020a]. 

 Cost Planning: Without long-term performance data, 
organizations struggle to accurately project 
maintenance costs, system updates, and potential 
failure rates. This uncertainty particularly affects small 
and medium enterprises with limited resources for 
technology experimentation. 

This limitation suggests a critical need for longitudinal studies 
that track GenAI performance in industrial settings over 
extended periods, particularly focusing on system stability, 
maintenance requirements, and consistent quality output. 

4.3 Standardization and Performance Metrics 

To improve result comparability across GenAI-AM studies, we 
propose standardized performance metrics: 

 Material Properties: R² values, RMSE, confidence 
intervals for property predictions 

 Process Parameters: Speed (time/iteration), resource 
utilization (CPU/GPU hours), convergence rates 

 Quality Metrics: Detection accuracy, false 
positive/negative rates, precision-recall curves 

 Implementation Metrics: Training time, inference 
speed, model size 

These metrics align with successful implementations 
demonstrated in [Eren 2024] and [Zheng 2024], providing a 
foundation for consistent performance evaluation across 
different studies. 

4.4 Ethical and Regulatory Considerations 

The integration of GenAI in AM also presents several critical 
ethical and regulatory challenges that warrant careful 
consideration. First, intellectual property rights and copyright 
issues emerge as significant concerns. The generative nature of 
AI models raises complex questions about design ownership, 
particularly when AI systems modify or combine existing designs. 
For instance, when GenAI systems like those described by 
[Elbadawi 2024] generate novel material formulations, 
determining the ownership and patentability of these 
compositions becomes legally complex. 

Data security and privacy represent another crucial dimension, 
particularly in industrial applications. The implementation of 
GenAI systems often requires extensive training data, including 
proprietary manufacturing parameters, material specifications, 
and design archives. Our analysis reveals that out of the 25 
reviewed studies, only 4 studies (12%) addressed ethical 
considerations including data protection protocols. This gap is 
particularly concerning given that AM data often contains 
sensitive information about manufacturing capabilities and 
competitive advantages. 

The issue of bias in AI models presents a significant challenge for 
equitable implementation. Training data often reflects existing 
industrial practices and may perpetuate historical biases in 
design and manufacturing processes. For example, the study by 
[Jadhav 2024] noted that their generative models showed 
performance variations across different types of lattice 
structures, potentially due to imbalances in the training data. 

AI explainability emerges as a critical concern, particularly in 
quality-critical applications. The "black box" nature of advanced 
GenAI models, especially in complex applications like process 
parameter optimization [Sideris 2023], poses challenges for 
regulatory compliance and quality assurance. This lack of 
transparency becomes particularly problematic in regulated 
industries like aerospace and medical device manufacturing, 
where clear understanding and validation of design decisions are 
mandatory. 

Regulatory considerations present another layer of complexity. 
The rapidly evolving nature of both GenAI and AM technologies 
creates challenges for regulatory frameworks that typically lag 
behind technological advancement. This gap is particularly 
evident in areas like medical device manufacturing, where 
[Ricotta 2020a] highlighted the need for clear guidelines on AI-
generated designs. 

Our analysis reveals significant gaps in addressing these ethical 
challenges in the current literature. While technical performance 
metrics are well-documented across the studies, only 12% of the 
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reviewed papers explicitly discussed ethical implications or 
considerations. This suggests a need for more comprehensive 
research approaches that consider both technical and ethical 
dimensions of GenAI implementation in AM. Future research 
should prioritize developing frameworks for responsible AI 
implementation that address these ethical challenges while 
maintaining innovation and efficiency in manufacturing 
processes. 

4.5 Stakeholder Implications 

The findings of this systematic review offer significant value for 
various stakeholders in the AM ecosystem. For researchers, this 
review provides a comprehensive mapping of research gaps, 
particularly in areas such as economic implications and 
scalability of GenAI implementations in AM. The identification of 
only 4 out of 26 studies addressing ethical considerations 
highlights critical areas for future investigation. Additionally, the 
synthesis of methodological approaches across successful 
implementations, such as those demonstrated in lattice 
structure optimization [Eren 2024] and material formulation 
[Elbadawi 2024], provides valuable guidance for research design. 

For industry practitioners, this review quantifies potential 
economic returns of GenAI integration in AM. The documented 
improvements demonstrate significant cost-saving potential:  
increase in energy absorption [Eren 2024], faster quality control 
[Zheng 2024], and reduced material waste through optimized 
parameter selection [Sideris 2023]. However, implementation 
costs include computational infrastructure, staff training, and 
system integration expenses. The review identifies key cost 
factors for different scales of operation, from large 
manufacturers to SMEs. 

Manufacturing organizations can develop evidence-based 
investment strategies based on documented successes in 
temperature prediction [Sideris 2023] and automated design 
[Jadhav 2024]. The economic implications vary by industry 
sector, with regulated industries facing additional compliance 
costs for AI explainability and validation. Organizations must 
consider both direct implementation costs and long-term 
operational expenses, including system maintenance, model 
updates, and ongoing quality assurance. 

Recent evidence demonstrates the tangible benefits of GenAI 
implementation in Additive Manufacturing (AM), as exemplified 
by the Eaton Corporation case study (Apriori, 2024) : 

 The findings reveal an 87% reduction in design time 
(from 16 weeks to 2 weeks) for lighting fixtures 

 Results indicate an 80% weight reduction in heat 
exchanger components 

 The study demonstrates accelerated market entry 
while maintaining quality standards 

These findings are consistent with recent research that has 
established significant efficiency gains [Eren 2024, Zheng 2024]. 

For policymakers, this review provides evidence-based insights 
for developing regulatory frameworks. The analysis of current 
technological capabilities, particularly in medical device 
manufacturing [Ricotta 2020a] and pharmaceutical applications 
[Elbadawi 2024], highlights areas requiring regulatory attention. 
The identified gaps in standardization and validation protocols 
can inform policy development for AI implementation in 
manufacturing. 

Educational institutions can utilize these findings for curriculum 
development and research direction. The review's thematic 
analysis of GenAI applications in AM provides a structured 

framework for understanding key technological trends and 
required competencies. The identified challenges in areas such 
as data security, AI bias, and regulatory compliance highlight the 
need for interdisciplinary approaches in AM education and 
research. 

These findings collectively suggest that while GenAI has 
demonstrated significant potential in transforming AM, realizing 
this potential fully requires addressing key research gaps and 
developing more standardized approaches to implementation 
and evaluation. The field appears to be at a critical juncture 
where theoretical possibilities need to be translated into 
practical, scalable solutions. 

4.6 Limitations and Future Directions 

Several significant limitations should be acknowledged in this 
systematic review of GenAI applications in AM. Primarily, the 
review's focus on studies from 2018 to Jan 2025, while justified 
by the emergence of modern GenAI, may have excluded valuable 
earlier foundational work in AI-driven manufacturing. 
Furthermore, the rapid evolution of GenAI means some of the 
most recent developments may not yet be published in peer-
reviewed literature, potentially missing crucial emerging trends 
and applications. 

Another notable constraint lies in the search and selection 
methodology. Although the review encompassed four major 
academic databases, this approach potentially missed relevant 
work in other repositories. Additionally, the restriction to 
English-language publications may have excluded significant 
research from non-English speaking regions, particularly given 
the global nature of AM developments. This linguistic limitation 
is especially pertinent considering the substantial contributions 
to AM research from non-English speaking countries. 

These limitations suggest the need for future reviews to expand 
their scope temporally and linguistically, develop standardized 
reporting frameworks, and include more diverse sources of 
evidence, including industry reports and non-academic 
implementations. Furthermore, greater emphasis should be 
placed on long-term performance studies and economic viability 
analyses to better understand the practical implications of GenAI 
in AM. 

5 CONCLUSIONS 

The present study systematically reviewed 25 peer-reviewed 
studies from 2018 to January 2025, providing evidence for the 
transformative impact of GenAI on AM. The analysis revealed 
five key domains where GenAI has made significant 
contributions: generative design, process optimization, data 
augmentation, AI-driven workflows, and practical applications. 
The findings clearly indicate substantial technological 
advancements, with empirical evidence demonstrating notable 
achievements in prediction accuracy and improvement in 
mechanical properties for lattice structures. Although these 
advances highlight GenAI's capacity to enhance both design 
capabilities and manufacturing efficiency, several significant 
gaps remain in the literature, particularly regarding economic 
viability studies and industrial scalability for small and medium 
enterprises. 

Future research directions should focus on longitudinal studies 
examining long-term stability of GenAI-optimized processes, 
development of cost-effective solutions, and creation of 
standardized evaluation frameworks. The successful 
implementation of GenAI in AM will necessitate coordinated 
efforts from researchers, industry practitioners, and 
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policymakers to facilitate the translation of these theoretical 
possibilities into scalable manufacturing solutions, representing 
not merely a technological advancement, but rather a 
fundamental shift in how we approach design, optimization, and 
production in advanced manufacturing. 
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GLOSSARY OF TECHNICAL TERMS 

Artificial Intelligence (AI) A broad field of computer science 
focused on creating systems that can perform tasks typically 
requiring human intelligence. In manufacturing, AI systems can 
learn from data to make decisions, recognize patterns, and 
optimize processes. 
Variational Autoencoder (VAE) A machine learning model that 
learns to compress and reconstruct data. It consists of two main 
parts: 

 An encoder that converts input data (like 3D designs) 
into a compact representation 

 A decoder that reconstructs the original data from this 
representation VAEs are particularly useful in AM for 
generating new designs while maintaining feasible 
manufacturing constraints. 

Bayesian Optimization A machine learning approach for finding 
optimal solutions, particularly useful when testing options is 
time-consuming or expensive. It works by: 

 Building a probability model of the objective function 

 Using this model to select the most promising new 
points to evaluate 

 Updating the model with new results In AM, it helps 
optimize printing parameters without requiring 
excessive experimental trials. 

Generative Adversarial Networks (GANs) A machine learning 
system using two neural networks that work against each other: 

 A generator network creates synthetic data (e.g., new 
design variations) 

 A discriminator network tries to distinguish between 
real and synthetic data Through this competition, 
GANs learn to generate increasingly realistic and viable 
designs for AM. 

Deep-DRAM (Deep learning-based Design for Random-network 
Additive Manufacturing) A specialized neural network 
architecture developed specifically for AM applications that: 

 Predicts mechanical properties of printed structures 

 Optimizes design parameters for desired properties 

 Accounts for manufacturing constraints and material 
behavior This system helps create designs that achieve 
specific performance targets while remaining 
manufacturable. 

3DGAN A three-dimensional extension of GANs specifically 
designed for generating 3D structures. It: 

 Processes and generates 3D volumetric data 

 Considers spatial relationships in all three dimensions 

 Creates manufacturable designs within AM constraints 
3DGAN is particularly valuable for generating complex 
geometric structures that would be difficult to design 
manually. 

StyleGAN An advanced version of GAN that separates high-level 
attributes (style) from spatial information, enabling: 

 Better control over generated designs 

 More consistent quality in outputs 

 Improved ability to mix different design features In 
AM, StyleGAN helps generate designs that combine 
desired characteristics from multiple sources. 

Large Language Models (LLMs) Advanced AI systems trained on 
vast amounts of text data that can: 

 Understand and generate human-like text 

 Process and respond to technical queries 

 Assist in documentation and process planning In AM, 
LLMs help with process documentation, 
troubleshooting, and knowledge sharing. 

Deep Learning A subset of machine learning using neural 
networks with multiple layers that can: 

 Learn complex patterns in data 

 Process multiple types of input (images, sensor data, 
etc.) 

 Make predictions about new situations In AM, deep 
learning helps optimize processes and predict 
manufacturing outcomes. 

Machine Learning A branch of AI that enables systems to learn 
from data without explicit programming. In AM, it's used for: 

 Process parameter optimization 

 Quality control and defect detection 

 Predictive maintenance 

 Design optimization 
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