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ABSTRACT 
Laminated composite plates and shells are widely used in 
aerospace, marine, and automotive industries. Their structural 
response can be tuned by modifying the stacking sequence, but 
accurate modelling requires computationally expensive finite 
element (FE) analysis. This study develops machine learning-
based predictive models as surrogates for FE analysis to predict 
the first natural frequency of laminated composites. Two 
problems are considered, a 2-variable low-dimensional (LD) 
problem and a 16-variable high-dimensional (HD) problem. Six 
machine learning models were trained and evaluated. For the LD 
problem, support vector regression (SVR) performed best (R² = 
0.9972, MSE = 0.0097). For the HD problem, Gaussian process 
regression (GPR) outperformed others (R² = 1.000, MSE ≪ 
0.0001), effectively handling complex nonlinearities. The results 
highlight SVR’s suitability for simpler cases and GPR’s superior 
predictive accuracy for high-dimensional design spaces. 
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1 INTRODUCTION  

Composite material is made of two or more constituent 
materials with significantly different chemical or physical 
properties which, when combined, produce a material with 
characteristics different from the individual components. The 
material after formation has a property far better than the 
individual ones. The composite material becomes lighter, more 
robust and less expensive than the traditional material. Different 
professionals have employed composite materials to limit their 
ingenuity and creativity. Further, composite has played an 
important role in moving towards industrial use and brought a 
revolution in material usage [Gilbert 2017, Karger-Kocsis 1995]. 
It is being used by different industries, like transport, 
construction, energy, sports, health etc. For example, 
automotive industry [Hallal 2013] has utilized the composites to 
reduce vehicle mass and improve driving performance all 
around. Composites have helped the designers build luxurious 
and high-end cars [O’Rourke 1990]. In aerospace, it has helped 

save fuel costs by adding a lightweight material with strength. 
Now, it has been part of half of the mass of a commercial carrier. 
The advanced composite fuselage used in aircraft improves 
performance, safety and reliability. It has even helped in making 
powerful rockets for future space tourist flights. Even in 
construction, the researchers have prized out the composites 
having better corrosion resistance, structural strength, 
insulation capacity, design flexibility and fatigue resistance 
[Banakar 2012] which have helped in making different sky-
touching monuments and heavy load bearing bridges with 
unique designs. It has also contributed to green energy spaces 
by proving more substantial and longer rotor blades for wind 
turbine to produce wind energy. Adding to the part of medical 
use [Oka 2011], composites have helped patients in 
rehabilitation and prolonged their abilities. Different medical 
manufacturers prefer composites to manufacture various 
medical equipment. Overall, composites have reached every 
corner from home furnishing to space equipment and have given 
clean and sustainable materials. It has also added sustainability 
to grow more in different industries in perspective of material 
use and has called out to have a good scope of lightweight 
material with high strength [Prashanth 2017], durability, design 
flexibility [Ma 2021], excellent chemical and corrosion-resistant 
properties for different uses [Mangino 2007, Qin 2006]. 

Various researchers have adopted machine learning (ML) 
algorithms to optimize and predict the behaviour of complex 
engineering problems [Nag 2024] [Mpia 2024]. Simulating and 
analyzing are more common than prototyping due to significant 
savings in cost and time [Chen 2019]. Similarly, prediction of 
responses using ML algorithms is economical rather than 
simulating using physics-based models. It reduces overall 
computation cost and time. The era is transforming from design-
based concepts to data-driven approaches based on ML 
techniques. Many researchers have applied regression and 
classification techniques to make accurate predictions. Kaveh et 
al. [Kaveh 2021] considered four ML algorithms, i.e. random 
forest, deep learning, decision tree and multiple linear 
regression to establish a relationship between fiber angle and 
buckling capacity of cylinders under bending-induced load. It 
was observed that deep learning ML model had the smallest 
error with substantial reduction in overall computation cost and 
time. Tiryaki et al. [Tiryaki 2014] utilized multiple linear 
regression and artificial neural network (ANN) to predict heat-
treated wood’s compressive strength. The results showed that 
ANN would provide closer results with minor errors than 
multiple linear regression. 

Yang et al. [Yang 2018] proposed application of a deep learning 
model to predict stiffness of high contrast elastic composites. Gu 
et al. [Gu 2018] employed linear regression and convolution 
neural network to a composite system to predict its various 
mechanical properties, including toughness and strength. 
Marani et al. [Marani 2020] validated the application of different 
regression techniques, i.e. random forest, gradient boosting and 
extreme gradient boosting to predict compressive strength of 
PCM-integrated cementitious composites. Zhang et al. [Zhang 
2021] employed the Gaussian process regression model to 
predict delamination factors during drilling of carbon fiber-
reinforced plastic composite. Kordijazi et al. [Kordijazi 2020] 
proposed the application of three ML algorithms, e.g. linear 
regression, ANN and multivariate polynomial regression to 
envisage the wetting properties of iron-based composites. Le et 
al. [Le 2021] also used the Gaussian process regression for 
prediction of tensile strength of polymer carbon nanotube 
composites. 

Most of the research works cited above on ML modelling of 
composite systems have a narrow purview, either in terms of 
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data used or number of design variables or complexity and 
spread of the design space. Typically, most of the works are 
limited to 30 data points, 3-5 design variables and a very narrow 
range of design variables. As such, these problems pose very 
limited challenges to ML algorithms. Considering a laminate 
stacking sequence design problem, Kalita et al. [Kalita 2021] 
carried out a comprehensive study on the effect of different 
basis functions of radial basis function ML models on their 
accuracy and prediction quality. 

In this paper, a similar laminate stacking sequence design 
problem is considered. The frequency characteristics of the 
laminated composites can be expressed as functions of the 
stacking sequence. However, the range of ply angles for each 
stacked layer is ±90°, which imposes a significant challenge to ML 
algorithms in terms of vastness of the design space. In this paper, 
six different ML predictive algorithms, i.e.  Linear regression, 
random forest (RF), adaptive boosting (AdaBoost), support 
vector machine (SVM), multilayer perceptron and Gaussian 
process regression are applied to model the laminate design 
problem and identify the best performing predictive model with 
respect to some popular statistical metrics, while addressing two 
different problems with different dimensions. 

2 METHODOLOGY  

2.1 Machine learning algorithms 

To develop predictive models for laminated composite 
structures, six widely used supervised learning algorithms were 
selected: linear regression (LR), random forest regression (RFR), 
adaptive boosting (AdaBoost), support vector regression (SVR), 
multilayer perceptron (MLP), and Gaussian process regression 
(GPR). Each of these algorithms has distinct advantages and 
suitability depending on the complexity of the problem. Their 
key principles and selection rationale are discussed below. 

2.1.1 Linear regression 

Linear regression is one of the simplest supervised 
machine learning models, which assumes a linear relationship 
between input variables (design parameters) and the output 
(natural frequency). The model fits a straight-line equation: 

𝑌 =  𝛽0  +  𝛽1𝑋1  +  𝛽2𝑋2  +  … +  𝛽𝑛𝑋𝑛  +  𝜀  (1)  

where 𝛽0 is the 𝑌-intercept and 𝛽1 is the slope of the line, ε is 
the random error term, 𝑛 number of independent variables. 

LR was included as a baseline model to evaluate how well linear 
approximations capture the composite response. 

2.1.2 Random Forest 

Random forest is an ensemble-based method that 
constructs multiple decision trees using different subsets of 
training data. Predictions from each tree are aggregated to 
improve accuracy and reduce overfitting. The key advantage of 
RFR is its ability to model complex nonlinear relationships while 
maintaining robustness against noise and overfitting. 

�̂� =
1

𝑇
∑𝑡=1

𝑇  𝑓𝑡(𝑋)     (2) 

where 𝑓𝑡(𝑋) represents individual decision trees. RFR was 
chosen for its strong performance in moderate-dimensional 
problems where relationships between design variables and 
response functions are highly nonlinear. 

 

2.1.3 Adaptive boosting 

AdaBoost is an iterative ensemble learning technique that 
combines multiple weak learners (typically decision stumps) into 
a strong predictive model. It assigns higher weights to 
misclassified samples in each iteration, forcing subsequent weak 

learners to focus on difficult-to-predict instances. The final 
prediction is obtained as a weighted sum of all weak models: 

𝐹(𝑋) = ∑𝑚=1
𝑀  𝛼𝑚ℎ𝑚(𝑋)    (3) 

where ℎ𝑚(𝑋) represents weak learners, and 𝛼𝑚 are their 
assigned weights. AdaBoost was selected for its ability to 
improve model accuracy in cases where individual models 
struggle to generalize well. 

2.1.4 Support vector machine 

SVR is a kernel-based learning algorithm that maps input 
features into a higher-dimensional space to find an optimal 
regression hyperplane. Unlike linear regression, SVR aims to 
minimize errors within a margin of tolerance (𝜖-insensitive loss 
function), ensuring robustness against outliers: 

min𝑤,𝑏  
1

2
∥ 𝑤 ∥2   subject to |𝑌 − (𝑤𝑋 + 𝑏)| ≤ 𝜖  (4) 

where 𝑤 and 𝑏 define the hyperplane. SVR was chosen 
because it excels in capturing nonlinear dependencies in low-
dimensional problems, as demonstrated by its superior 
performance in the 2-variable LD case. 

2.1.5 Multilayer perceptron  

MLP is a type of artificial neural network (ANN) that 
consists of multiple layers: an input layer, hidden layers, and an 
output layer. Each neuron applies an activation function (e.g., 
ReLU, sigmoid) to process weighted sums of inputs: 

ℎ(𝑥) = 𝑓(𝑊𝑋 + 𝑏)    (5) 

where 𝑊 represents connection weights and 𝑏 represents 
biases. MLP was included due to its strong capability in 
approximating complex functions, especially in cases where 
interactions between design variables are highly nonlinear. 

2.1.6 Gaussian process regression  

GPR is a nonparametric Bayesian approach that models the 
relationship between input and output variables using a 
probabilistic framework. It assumes that any finite set of 
observed data points follows a joint Gaussian distribution: 

𝑌(𝑋) ∼ 𝒢𝒫(𝜇(𝑋), 𝐾(𝑋, 𝑋′))    (6) 

where 𝜇(𝑋) is the mean function and 𝐾(𝑋, 𝑋′) is the kernel 
function modelling data correlations. GPR was chosen for high-
dimensional problems because it provides uncertainty 
quantification and handles sparse data efficiently. Its superior 
performance in the 16-variable HD problem confirmed its ability 
to generalize well in complex design spaces. 

2.2  Model evaluation method  

The accuracy of any machine learning model is one of the 
essential parts to be calculated. To evaluate the model's 
performance, different performance metrics, MSE, MAE and R2 
or Coefficient of determination metrics, are used in regression 
analysis.  

2.2.1 R-square 

Coefficient of determination is the most used accuracy 
metric in regression tasks. It is a measure of the amount of 
variance in the data explained by the developed model. R2 is 
determined by. 

𝑅2 = 1 −
∑ (𝑥𝑖−x̂)2𝑛

𝑖=1

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

    (7) 

where 𝑥𝑖 = actual value of 𝑥, �̅�  = Mean value of 𝑥, �̂� = 
Predicted value of 𝑥. 

2.2.2 Mean absolute error 

Mean absolute error (MAE) are metrics which is being used 
for getting the accuracies of model. It measures the level of 
accuracy being reached over there using the model. It says about 
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how much deviation is there from the actual. The average of 
mean absolute difference between the actual and predicted 
value in dataset is further calculated as 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑥𝑖 − x̂|𝑁

𝑖=1     (8)  

2.2.3 Mean square error 

Means square error measures the degree to which overall 
sample deviates from the actual value to the predicted one. 

𝑀𝐴𝐸 =
1

𝑁
∑ (𝑥𝑖 − x̂)2𝑁

𝑖=1    (9) 

2.2.4 Median error 

The median error is computed as 

Med. Error (x, x̂) = median (|x1 −  x̂1|, … , |xn − x̂n|)  (10) 

2.2.5 Median absolute error 

Median absolute error is used to compare the true 
observed response with predicted response in regression. It is 
calculated as  

Med. Error (x , x̂) = median (|x1 − x̂1|, … , |𝑥n − x̂n|)  (11) 

 

2.3 Objectives and problem description  

The prime objective of this paper is to assess the utility of 
six popular ML regression algorithms in developing accurate 
prediction models for laminate composite systems. For this task 
linear regression (LR), random forest regression (RFR), Ada Boost 
regression (ABR), support vector regression (SVR), multi-layer 
perceptron regression (MLP), gaussian process regression (GP) 
are selected. The developed models are assessed using a variety 
of metrics like mean square error (MSE), R- square(R2), mean 
absolute error (MAE), etc. on training as well as independent test 
data.  

Two test problems of varying dimensionality are 
considered in this work. The first problem is a 2-variable low 
dimensional (LD) problem. Here, the objective is to accurately 
predict the first natural frequency using the ply-angles as the 
design variables. The range of the ply angles is ±90°. Similarly, for 
the second problem, a 16-variable high dimensional (HD) 
problem is selected. Here too the ply angles of the 16 layers are 
the variables which can vary between ±90°. 

Figure 1. Pair plot diagram for the design and response variable for low 
dimensional problem 

3 RESULT AND DISCUSSION  

3.1 Low-dimensional problem 

In this LD problem, a square symmetric simply 
supported composite of 4-ply material graphite-epoxy 
composite laminate is considered where the ply angles are 
considered as a design variable. The data analyzed using various 

ML models are utilized from Kalita et al. [20]. For the LD problem, 
the thickness to side ratio of the composite plate is being taken 
as 0.0005. The first natural frequency is obtained using FEM 
analysis [20]. The training dataset is design using a Hammersley 
design and contains 72 data points. A random sampled 
independent test dataset of 20 datapoints is also used.  

3.1.1 Data visualization  

The training data is visualized using pair plot diagram 
as shown in Figure 1 which gives the correlation between the 
different design variables and a response providing the 
relationship between the different variables of data. It is seen 
that due to the use of Hammersley design the data points are 
uniformly distributed in the search space. The effect of both the 
variables is seen to be similar on the first natural frequency. 

In Figure 2 the data is described by Pearson correlation 
heatmap which shows the correlation between the input and 
output parameters. The responses show no correlation between 
the two independent variables which exhibit the lack of 
multicollinearity, an important assumption for statistical 
regression models. The first natural frequency also has a very 
low correlation with the input variables. This indicates that the 
dependent variable has very small linear relation with the 
independent variables and thus algorithms that rely on mapping 
only linear relations will have low predictive power.  

Figure 2. Correlation heatmap between frequency and variables for LD 
problems 

Random Forest has performed well in testing data for 
the low dimensional problem. Compared to all the models over 
here, the support vector regression has performed well with R2 
0.99, i.e., relatively closer to 1 in the training data. All other 
models show the negative result in the R2 case, which directly 
means that the model is performing worse than the mean value 
line. MSE is quite similar to MAE, but the square of the difference 
between the model prediction and the training dataset is being 
calculated instead of using the absolute value. MLP has shown a 
higher value for MSE, i.e., 157.22, and MAE for the same is 10.13 
in the case of the training dataset. 

Metric R2 MSE MAE MSLE MedAE 

LR 0.0009 3.4416 1.5338 0.0015 1.4225 

RFR 0.9487 0.1768 0.3153 0.0001 0.2103 

ABR 0.8541 0.5024 0.5767 0.0002 0.5801 

SVR 0.9972 0.0097 0.0976 0 0.0999 

MLP -44.6443 157.2276 10.1354 0.1251 8.7607 

GPR 1 <<0.0001 <<0.0001 <<0.0001 <<0.0001 

Table 1. Performance metrics for the training data of LD problem 
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Figure 3. Comparisons of ML regression model for low dimensional problems  
 

Similarly, the gaussian process regression has shown a 
huge value of MSE, i.e., 1799. It shows the presence of lots of 
outliers, hindering the model's prediction accuracy. The MSE 
value is considered a good value as it is closer to 0. Compared to 
all in Random Forest MSE value is 0.17 and SVR is 0.009, much 
closer to 0 in training and testing; RFR has performed well and 
has an MSE value of 0.39. 

Metric R2 MSE MAE MSLE MedAE 

LR -2.5456 1.5529 1.0837 0.0007 1.349 

RFR 0.1082 0.3906 0.4965 0.0002 0.3244 

ABR -0.2524 0.5485 0.5791 0.0003 0.4822 

SVR -2.1635 1.3855 0.9759 0.0007 1.1453 

MLP -187.2959 82.4693 8.3881 0.0428 9.0981 

GPR -4107.0268 1799.2209 40.2359 13.148 44.329 

Table 2. Performance metrics for testing data of LD problem 

3.2 High-dimensional problem 

For the HD problem, a simply supported 32-ply square 
symmetric composite laminate is considered. The16-ply angles 

are considered as the design variables. The ratio between 
thickness to the side is 0.04. The training data for the HD 
problem is designed as per Hammersley design containing 712 
datapoints and the testing data is made of 50 randomly sampled 
datapoints.  

Multivariate analysis is done to visualize the data. Fig 
4 shows the heatmap (correlation matrix) graph. It is observed 
that there is no correlation found among the design variables. 
Thus, there is no multicollinearity in the data. However, the 
output response i.e., the first natural frequency too does not 
show any linear dependencies on the 16 design variables. 

Similarly, the data is being analyzed for the high 
dimensional problem and the different performance metrics 
were taken into consideration to analyze the performance of 
other models being executed. The coefficient of determination, 
i.e., R2 values, is examined and found that random forest, 
support vector and GPR have performed well, and residuals are 
closer to the fit line. The performance was too weak for all the 
models to determine the lack of proper determination between 
the dependent and independent variables in testing data. 
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Figure 4. Correlation heatmap between frequency and variables for High Dimensional problems 

  

  

  
Figure 5. Comparisons of ML regression model for High dimensional problem 
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Metric R2 MSE MAE MSLE MedAE 

LR 0.0095 2.1465 1.1868 0.0009 0.9928 

RFR 0.8955 0.2264 0.374 0.0001 0.2992 

ABR 0.2026 1.7279 1.0789 0.0007 0.9292 

SVR 0.9955 0.0097 0.098 0 0.1 

MLP 0.839 0.3488 0.4559 0.0001 0.3692 

GPR 1 <<0.0001 <<0.0001 <<0.0001 <<0.0001 

Table 3. Performance metrics for the training data of HD problem 
 

Metric R2 MSE MAE MSLE MedAE 

LR -1.8727 17.927 3.7442 0.0081 4.5364 

RFR -0.5119 9.4352 2.6458 0.0043 2.6073 

ABR -1.1341 13.3179 3.0807 0.006 2.8376 

SVR -2.3469 20.8862 4.0056 0.0093 5.2132 

MLP -32.1258 206.7222 10.4069 0.351 7.1385 

GPR -321.7474 2014.1092 44.3595 14.3983 43.8912 

Table 4. Performance metrics for testing data of HD problem 

4 CONCLUSIONS 

This study investigates the predictive modeling of 
laminated composites using machine learning techniques. Based 
on the analysis, the following key findings are highlighted— 

1. For low-dimensional (LD) problems, support vector 
regression (SVR) demonstrated the best performance, 
achieving an R² value of 0.9972 and MSE of 0.0097, making 
it a strong candidate for simpler cases. 

2. For high-dimensional (HD) problems, Gaussian process 
regression (GPR) outperformed all other models, achieving 
R² = 1.000 and an extremely low MSE ≪ 0.0001, 
demonstrating its capability to handle complex nonlinear 
relationships. 

3. Random forest regression (RFR) and AdaBoost showed 
competitive performance, particularly in moderate-
dimensional cases, but struggled with scalability in very 
high-dimensional spaces. 

4. The lack of multicollinearity in design variables was 
confirmed using correlation heatmaps, ensuring that 
machine learning models were not biased due to redundant 
inputs. 

5. The results provide a valuable reference for optimizing 
composite structures, particularly in aerospace, 
automotive, and marine applications where computational 
efficiency is critical. 

Future work will explore hybrid machine learning models and 
deep learning approaches to further enhance predictive 
accuracy and generalization for complex laminated composite 
systems. 
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