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Abstract 

Abrasive waterjet machining (AWJ) is characterized by significantly better efficiency and better precision 
for difficult-to-machine materials than conventional machining technologies. However, the larger number 
of control parameters characterizing this process needs optimization. The study compares the 
performance of three nature-inspired metaheuristic algorithms, ALO, GWO, and MFO for optimizing the 
abrasive water jet (AWJ) treatment. The Response Surface Methodology was used to determine the cost 
function. The study evaluates the convergence and computational cost of the algorithms to aid future 
developments in this field. The study aims to maximize the cutting thickness by predicting the optimal 
water-abrasive cutting parameters (nozzle diameter, abrasive concentration, feed speed). For all three 
algorithms, the maximum cutting depth was determined to be 87.47 mm, which differs only less than 3% 
from the actual value. The results highlight the potential of ant-lion optimization (ALO), grey wolf optimizer 
(GWO), and (MFO) moth-flame optimization algorithms for resolving optimization issues in AWJ 
machining. 
Keywords: 

meta-heuristic algorithms; ALO; GWO; MFO, Abrasive Water Jet; AWJ 
 
 
 

 

1 INTRODUCTION 

Conventional machining technologies are insufficiently 
effective to provide the necessary degree of performance 
and precision when cutting materials that are challenging to 
process. Abrasive Water Jet (AWJ) processing is a modern 
separation technology that has started to compete 
efficiently with standard methods of separating materials in 
recent years. This is primarily directly to its versatile nature, 
ensuing from the broad possibilities of machining various 
materials, including composite and multilayer materials 
[Szatkiewicz et al. 2023], as well as cutting out complex 
shapes with high-quality or carried out in extraordinary 
surroundings (fire risk, explosion hazard, possibility of use 
in work up to 6000 m underwater, etc.). It is a special, ‘on 
cold condition’ machining process. A coherent, high-
velocity jet may be produced with a small-diameter nozzle 
at pressures of up to 600 MPa at speeds of up to 1000 m/s, 
and even over 1000 MPa in the special devices [Perec et 
al. 2021a]. These are the benefits of AWJ over other 
machining technologies: minimal machining forces, high 
flexibility, high machining adaptability, and lack of thermal 
deformations [Perec et al. 2021].  

Because there are many more control parameters 
characterized the abrasive waterjet machining (AWJ) than 

ordinary separation techniques, it requires optimization. 
Advanced production processes are described by a lot of 
control factors that have a significant impact on their 
efficiency [Perec 2021], [Srivastava et al. 2019], [Madić et 
al. 2024]. AWJ cutting process is widely used in numerous 
industries [Perec, Kawecka, et al. 2023], due to its ability to 
cut hard [Perec et al. 2022], [Radomska-Zalas 2023a], and 
thick materials with high quality [Valicek et al. 2007], [Hreha 
et al. 2014 Optimization of the cutting control factors like 
nozzle diameter, garnet concentration, and traverse speed 
is crucial to achieving efficient and effective cutting 
[Kawecka 2023], [Perec 2023], [Radomska-Zalas 2023b]. 
An optimization algorithm finds the best solution [Perec and 
Musial 2021] among possible solutions to a given issue. 
Finding the best settings to achieve maximization or 
minimization of a given cost function is the aim [Kawecka et 

al. 2024]. Optimization algorithms are used to search for 

optimal answers to challenging issues by iteratively 
exploring the solution space and selecting the best option 
among multiple possibilities. An optimization problem 
involves finding the input variables that satisfy a set of 
constraints while minimizing a given objective function. The 
constraints specify the allowable values for the variables, 
while the objective cost function evaluates the quality or 
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performance of the solution. Single-criteria optimization 
consists of minimizing or maximizing a previously defined 
objective function, subject to various constraints, equality, 
and inequality constraints. Solving the optimization problem 
consists of finding the best (lowest or highest) value of a 
given objective function for a variable f(x)   x = [x1,x1,…,xD ] 
with the following restrictions: 

Li≤xi≤Ui,      (1) 

i=1,2,…,D,     (2) 

where: 

D – the size of the solution search space, 

x – decision variable defining the space of solutions 

[Li, Ui ] – boundaries of search areas of – this size i. 

 

Optimization methods can be broadly categorized into 
exact [Radomska-Zalas 2024] and metaheuristic methods 
[Rawicki and Podhajecki 2024]. Exact methods, such as 
dynamic programming, constraint programming, A* search, 
and branch and bound, aim to obtain the optimal answer by 
exploring the solution space.  

In comparison to gradient optimization methods, for 
example (Newton's method), metaheuristic algorithms use 
stochastic methods. Metaheuristic optimization algorithms 
are also divided into two parts: local search-based 
optimization methods (single candidate solution) and 
population-based optimization methods (multiple 
solutions). Local search-based optimization methods 
operate with a single answer and try to increase a single 
answer using a 'neighborhood' mechanism, such as 
simulated annealing and hill-climbing methods [Jaddi and 
Abdullah 2020], [Morales-Castañeda et al. 2019]. 

The main advantage of these optimization techniques, 
therefore, is faster exploration. In contrast, the main 
drawback is their focus on exploration (global search) rather 
than exploitation (local search) search, resulting in an 
increased probability of local optimum trapping. The meta-
heuristic algorithms are classified based on different 
inspirations in four classes [Rajakumar et al. 2016]: 
Evolutionary Algorithm (EA), Physics Based Algorithm 
(PhA), Human Based Algorithm (HBA), and Swarm 
Intelligence (SI) algorithm. 

The phenomenon of evolution in nature inspires the 
evolutionary algorithms [Michalak 2015], [Ganovska et al. 
2016]. An initial random solution evolved to undertake 
optimization. A new population is generated by the 
combining and mutation of individuals from the preceding 
generation. The newly created individuals have a higher 
probability of forming a new population, which should be 
better than the initial and previous generations. Over some 
generations, the initial random population will be optimized. 

Algorithms based on physics are motivated by physical 
phenomena in the surroundings but not by living organisms. 
They were created by imitating some physics and chemistry 
laws and transforming them into mathematical and 
computational models. There were few references to the 
usage of these routines in manufacturing. In the future 
research works can be carried out to use these algorithms 
in the field of manufacturing. 

Human-based algorithms were put out, drawing 
inspiration from the social behaviors of people [Bai et al. 
2023].  

Swarm intelligence is a soft biomimetic of natural 
swarms, i.e. it imitates the collective organizations and 
interactions of the swarm rather than the particular structure 
in usual artificial intelligence [Shah et al. 2016]. An example 
of a swarm intelligence population-based method is 
Teaching Learning Based Optimization (TLBO) introduced 

by Rao et al., [Rao et al. 2011] uses the impact of a teacher 
on learners. This algorithm belongs to the population-based 
group, and the method advances to the global solution by 
using a population of solutions. 

Other examples of swarm-based optimization methods 
(algorithms) are Ant Lion Optimization Algorithm (ALO), 
Gray Wolf Optimizer Algorithm (GWO), Moth-Flame 
Optimization Algorithm (MFO), Bat Algorithm (BA), Artificial 
Bee Colony Algorithm (ABC), Krill Herd Algorithm (KH) and 
Cuckoo Search Algorithm (CSA). The ant lion optimization 
algorithm tries to reflect the behavior of ants in their life 
cycle, which consists of two periods: larval and adult. The 
grey wolf algorithm exploits the behavior and hierarchy of 
the grey wolf. The month flame algorithm utilizes a swarm 
of months circulating to the flame. 

In the exploration of the global best (near-optimal) 
answer, meta-heuristic algorithms require numerous fitness 
evaluations [Gad 2022].  

Process control variables including water pressure, 
abrasive flow rate, traverse speed, and standoff distance 
have a big impact on the effectiveness of AWJ machining. 
Optimizing these parameters is crucial to improving cutting 
performance and efficiency. Meta-heuristic algorithms like 
Grey Wolf Optimizer (GWO), Ant Lion Optimizer (ALO), and 
Moth Flame Optimization (MFO) are used in process 
parameter optimization on account of their high potential to 
look for close to optimal answers in elaborate search areas.  

Okokpujie et al., [Okokpujie and Tartibu 2023] 
demonstrated a single optimization problem solved to 
separately optimize the cutting force and surface roughness 
using an optimizer using the Ant lion algorithm. A multi-
criteria optimization problem was also solved using the 
metaheuristic Ant lion algorithm which was applied to obtain 
non-dominated or Pareto optimal solutions. 

Rajamani et al., compared MFO with additional 
algorithms and found it superior in conditions of speed 
alignment and answer quality. for AWJM applications The 
optimal performance of AWJC was derived by using a moth 
flame optimization (MFO) metaheuristic algorithm to 
increase the quality of treatment. The performance of MFO 
was also compared with other algorithms like the genetic 
algorithm, particle swarm algorithm, dragonfly algorithm, 
and gray wolf algorithm. MFO was identified to have better 
results in conditions of the most important efficiency 
parameters, including fast convergence, diversity, spacing, 
and hyper-volume values, among the compared algorithms 
[Rajamani et al. 2023]. 

Chakraborty et al. [Chakraborty and Mitra 2018] used 
the Grey Wolf Optimizer (GWO), to optimize the AWJM 
process minimizing the kerf inclination angle and 
maximizing the target removal degree using GWO particle 
swarm optimization (PSO), genetic algorithm (GA), and 
simulated annealing (SA). The results demonstrate that the 
GWO algorithm is better than the other algorithms in 
conditions of convergence rate, computational 
effectiveness, and precision.  

Overall, the literature review indicates that nature-
inspired metaheuristic algorithms can effectively optimize 
the water-abrasive cutting process parameters. The 
purpose of research is to fill up this gap by comparing three 
recently proposed metaheuristic techniques, namely ant 
lion optimization (ALO), grey wolf optimizer (GWO), and 
(MFO) Moth-flame optimization algorithm evaluating their 
performance in optimizing the process parameters of water-
jetting processes.  

These algorithms were chosen because of their unique 
search processes, which successfully strike an equilibrium 
between the search area's investigating and exploiting, the 
potential to locate global solutions, and the avoidance of 
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early convergence. Furthermore, they demonstrate various 
methods: ALO emulates lion ant predation, GWO simulates 
grey wolf hunting, and MFO mimics moth navigability. 
Additionally, these algorithms were chosen to compare how 
well they will work for the water jet cutting process 
optimization problem. 

2 MATERIALS AND METHODS 

2.1 Cutting material 

Marble was selected as the target for cutting. It is a 
heterogeneous rock material whose features vary 
depending on its origin. Marble is a crystalline rock, with 
calcite grains making up the majority. This rock was initiated 
as a result of the limestone conversion. Marble is a worthy 
material for ornamental and construction purposes. It is 
frequently applied for sculpting, as a structural material, and 
for different other building purposes. Marble appears in a 
diversity of hues: white, cream, red, and gray. The rock 
utilized in the research comes from the Nanutarra White 
Marble Quarry, Western Australia. This rock is durable, 
attractive, and has high luster. The ensuing characteristics 
are density: 2730 kg/dm3, compression strength: 45 - 48 
MPa, hardness: 7 (Mohs). 

2.2 Abrasive material 

In this test, almandine garnet was used as the abrasive. 
Due to its unique properties, it is widely applied as an 
abrasive material [Młynarczuk et al. 2014]. Very good 
properties, i.e. characterize it: 

• Hardness of 7 to 8 on the Mohs scale, making it efficient 
in abrasive applications. 

• High resistance to high-speed impacts without cracking. 

• Low dust generation: Garnet produces minimal dust 
during abrasive processes. 

• High recycling potential, which enables the recovery of 
grains after processing up to five times. 

• Chemically inert and does not react with most materials, 
ensuring the ability to tool a broad scope of materials. 

J80A garnet was utilized in the research. This abrasive 
comes from the Jinhong Mining deposit, in China. Its 
detailed properties are presented in Tab. 1. Its grain forms 
and distribution are shown in Fig. 1. 

 
 

a) b) 

Fig. 1. Garnet J80A grains: a) forms, b) size distribution 

Tab. 1: Chosen characteristic of J80A abrasive. 

Mineral Content [%] 

Amandine Ilmenite Omphacite Rutile Quartz Hornblende 
Free 
Silica 

90-96 1.0 1.5 0.6 <0.1 <0.5 <0.5% 

Chemical Composition [%] 

`Fe2O3 SiO2 Al2O3 FeO CaO MgO MnO 

17 39 21 8 9.5 5 0.4 

2.3 Meta-heuristic algorithms 

In this paper, for the optimization problem parameters of the 
AWJ cutting process, the ALO, GWO, and MFO were used. 
In meta-heuristic algorithms, the process of finding a 
solution is divided into two parts: exploration and 
exploitation. The exploration phase addresses the process 
of exploring the area of the search space as widely as 
possible. The algorithm for this phase requires stochastic 
operators to search the space randomly and globally. The 
exploitation is the process of finding local maxima around 
the solution space in the surroundings of the local optimal 
values obtained in the exploration phase. 

All metaheuristic algorithms have specific control 
parameters, such as the annealing temperature in the 
simulated annealing algorithm, the update of the 
pheromone level as a parameter in the ant algorithm, and 
the mutation rate in the genetic algorithm. These 
parameters are required to be properly tuned to achieve 
effective optimization. In general, it is essential to fine-tune 
the control parameters by a trial-and-error method in every 
optimization problem.  

The objective function, characterizing the abrasive 
water jet cutting process, was established using the 
Response Surface Methodology (RSM). [Fajdek-Bieda et 
al. 2021].  

Population-based metaheuristic algorithms start by 
selecting a fixed number of search agents, and then 
randomly generating their initial positions in the exploration 
area. These algorithms then explore the search space by 
updating the locations of the search agents based on their 
cost function values [Kawecka 2024]. 

For example, in Ant Lion Optimizer [Mirjalili 2015a] and 
other metaheuristic algorithms based on certain 
populations, like Grey Wolf Optimizer [Mirjalili et al. 2014], 
and Moth-Flame Algorithm [Kawecka and Puzio 2024], the 
initial population is determined by the number of objects as 
grey wolves, ant lions, or moth-flames, respectively [Mirjalili 
2015b], [Gupta et al. 2015]. 

Ant Lion Optimization Algorithm 

Ant Lion Optimization algorithm is a nature-inspired meta-
heuristic algorithm that uses two populations [Kawecka 
2024]. The first population is ants, and the second 
population is ant lions. Ant lions in their larval form hunt ants 
by digging holes in the sand in a desert area (Fig. 2a). This 
can cause an ant to fall into the hole towards the center, 
where an ant lion is waiting to catch it. If an ant enters the 
trap, the ant lions try to get it down towards the center of 
the hole. (Fig. 2b).  

The algorithm models the behavior of these two 
populations. The algorithm uses vectors and matrices to 
represent the ant lions and ants and their distance from 
each other. The ants are search agents used to find the 
optimal answer. By updating the positions of the ants to the 
highly ranked ant lions, based on the value of the cost 
function, the algorithm converges to the optimal answer. 

 

  

a) b) 

Fig. 2. a) Ant lion hunting schematic, b) Ant lion trap view 
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The ants are search agents, using random walking to 
explore the search area. A random walking of ants takes 
place in the area between the boundaries of the area 
occupied by the ant lions.  

The ant lions represent solutions to the optimization 
problem. If an ant enters the trap, the ant lions try to get it 
down towards the center of the hole. (Fig. 2b). 

In the algorithm, the highest-level ant lions are selected. 
The ant search paths are influenced by these selected best-
ranking ant lions introducing elitism in the algorithm.  

The ants and ant lions with the highest ranking are 
randomly chosen using a roulette wheel, and those with the 
highest ranking, are selected more frequently, with higher 
probability. Ants random search and selection of ant lions 
ensure finding the global minimum and avoids situations 
when algorithm stagnation in local optima. 

The ant lion is steered towards the center of the ant trap by 
reducing the size of the hypersphere so that the ant can 
explore and search space around the trap. This is achieved 
by applying a ratio to the lower and upper bounds of the 
ant's orbit. As the algorithm runs over time, the area will 
decrease. In this way, we control the area of exploration of 
the search area that takes place.  

Random ant walks in search space ensure a high level of 
solution space exploration. In addition, a random search of 
the search space by ants and a random selection of ant 
lions. The exploration of the search area is ensured by 
decreasing the intensity of random walking with time, 
ensuring the convergence of the algorithm. The algorithm 
can be implemented with various parameter settings to 
achieve optimal performance. 

The number of ants (search agents) in the swarm, the 
dimensionality of the issue, the maximum number of 
iterations, and the algorithm's sorting and updating of ant 
positions during each iteration are some important variables 
that affect the ALO algorithm's computational complexity 
[Roeva et al. 2023]. The parameters of ALO algorithm are 
the number of ants (search agents) in the population, the 
maximum number of iterations, and the number of variables 
or dimensions in the optimization problem to solve. 

 

Gray Wolf Optimization Algorithm 

Grey Wolf Optimization (GWO) is a metaheuristic algorithm 
inspired by dominance order and the hunting procedure of 
grey wolves [Mirjalili et al. 2014]. Grey wolves have a 
hierarchical system in which wolves are ranked according 
to strength and power. All members of the pack have a 
specific rank, there are alpha, beta, delta, and omega 
wolves. GWO imitates the behavior of alpha, beta, and 
delta wolves in a pack, which coordinate and communicate 
to hunt their prey. 

First in rank is the Alpha wolf stays at the top of the 
hierarchy and leads the pack. Second in the hierarchy is the 
beta wolf, his role is supporting the alfa wolf to maintain 
discipline in the pack. Last in the hierarchy is the omega 
wolf. The omega wolf is furthermore responsible for taking 
care of the younger wolves. The hunting strategy of a wolf 
pack involves the following stages. First is approach, 
tracking, and chasing the prey. The second one is to chase, 
harass, and circle the victim until it ceases to move. The 
third is attacking the prey when it is exhausted (Fig. 3). 

Applying the wolf behavior to our optimization problem, 
each step of the algorithm evaluates the three appropriate 
solutions by alpha, beta, and delta, respectively, and the 
remaining solutions by omega. Essentially, this means that 
the optimization process follows the flow of the three 

appropriate solutions obtained so far. Finally, the prey will 
be the optimal solution of the optimization. 

 

 
 

a) b) 

 
 

c) d) 

Fig. 3. Hunting procedure by grey wolves: a), b) pursue and 
track victim, c) encircling prey, d) attacking prey 

There are two parameters of the algorithm. The first 
parameter of the algorithm, vector 𝐴, controls the trade-off 

between exploration and exploitation of the search area by 
changing values from 2 to 0 in successive iterations of the 
algorithm. The second parameter defined by vector 𝐶 adds 

a component of randomness, necessary to ensure that 
search agents do not get stuck in the local minimum. Since 
we do not know the actual position of the optimal solution, 
the direction of the search and the update of the location of 
the search agents depend on the top three solutions. The 
position of the wolf will be updated according to the three 
best wolves from the previous iteration.  

In a mathematical model reflecting the behavior of a wolf 
pack, the discrete positions of all individuals at successive 
time steps are determined. 

The position of the 𝑖-th wolf in the 𝑗 -th time step 𝑋𝑘
𝑖  is 

determined in the algorithm according to the relation: 

 𝑋𝑘
𝑖 = 𝑋𝑘−1

𝑝
− 𝐴𝑘|𝐶𝑘𝑋𝑘−1

𝑝
− 𝑋𝑘−1

𝑖 | (1) 

where: 

𝑘- time step number, 𝑋𝑘−1
𝑝

- the position of the victim 

(optimal point) at the previous time step.  

At each time step, the parameters 𝐴 and 𝐶 are calculated 
as follows: 

 𝐴𝑘 = 2𝑎𝑘𝑟2 , 

 𝐶𝑘 = 𝑎𝑘𝑟1.  

Where: 𝑟1, 𝑟2 - random numbers in the range (0, 1), 𝑎-
coefficient determining the extent of movement of wolves in 
the search area of the optimization problem. 

In the case of a large value of the parameter, 𝑎 

individuals can move in all the search areas of the task. 
However, in case a small value of the parameter 𝑎 makes 

the optimal point searched for in the finest individual wolf's 
nearest environs. In the algorithm, the value of the 
parameter 𝐴 is varied in the range [0, 2].  

Based on the hunting techniques used by grey wolves 
the phase of encirclement of the potential prey), the 
algorithm assumes that the optimal point is between the 
best-adapted individuals in the pack, wolf 𝛼, 𝛽, 𝛾. 
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To determine the position in the next iteration step for 
the i-th individual, the determination of the distance of this 
individual from the best individuals in the pack is used. 

𝐷𝛼 = |𝐶1𝑋𝑘−1
𝛼 − 𝑋𝑘−1

𝑖 |, 𝐷 𝛽 = |𝐶1𝑋𝑘−1
𝛽

− 𝑋𝑘−1
𝑖 |,  (2) 

The algorithm's time intricacy of the calculation is 
determined by on the number of iterations, the number of 
agents, and the size of the search area. During the search 
process, the position of each wolf is updated iteratively 
using a combination of exploration and exploitation 
strategies. The position of each wolf is defined and 
grounded on the locations of the alpha, beta, and delta 
wolves, considering a certain degree of randomness.  

The location of the i-th wolf at succeeding time step Xk
i 

is determined by the algorithm according to the following 
equation: 

 

𝑋𝑘
𝑖 =

𝑋1 + 𝑋2 + 𝑋3

3
 

(3) 

where: 

 
𝑋1 = 𝑋𝑘−1

𝛼 − 𝐴𝑘
𝛼𝐷𝛼, 𝑋1 = 𝑋𝑘−1

𝛽
− 𝐴𝑘

𝛽
𝐷𝛽, 

𝑋1 = 𝑋𝑘−1
𝛿 − 𝐴𝑘

𝛿𝐷𝛿 

(4) 

Additionally, the straightness, and ease of application of 
GWO make it an attractive optimization algorithm in 
different applications.  

The computational intricacy of the GWO algorithm is 
determined by the number of wolves, the number of 
variables, the maximum iteration count, and the sorting 
procedure for wolves at each iteration. The most important 
parameters of GWO algorithm are the population size of 
wolves (N) (search agents) in the population, the maximum 
number of iterations, and the variables or dimensions of the 
optimizing problem [Alsheikh and Munassar 2023]. It 
controls the trade-off between exploration and exploitation. 
 

Moth-Flame Optimization Algorithm 

Moths fly around a light source at night, giving the 
impression that they want to get closer to the source light. 
The Moth Flame Optimization (MFO) algorithm is inspired 
by the natural world [Mirjalili 2015b]. The algorithm uses a 
spiral movement of the moths around the light source. 
Moths fly around a light source at night and moth behavior 
is a consequence of their natural navigation strategy used 
to fly in a straight line. The moth tries to keep the light 
source at a constant angle to itself. In the absence of 
unnatural light, this is usually the moon (Fig. 4a). When 
natural and artificial light sources are close the moths keep 
a constant angle to a closer light source which causes the 
moths to circle around the flame or lamp. 

This is an algorithm based on the population that the 
moths represent, represented by a matrix. The best 
solutions obtained so far are represented by the flame 
matrix. The flames are points around which the search 
agents, i.e. the moth population, will circulate in a spiral 
motion (Fig. 4b).  

  
a) b) 

Fig. 4. a) Transverse orientation b) Spiral flying path 
around close light sources. 

The moth and flame have an additional vector storing the 
values of the cost function. The moths fly around the best 
answer obtained so far, the flames and moths try to 
approach them using movement like a logarithmic spiral. 
The formula for this trajectory depends on the distance 
between the moth and the corresponding flame and it 
depends on user parameters and random variables which 
reduces the range of the spiral with time. 

The paradigm of population-based metaheuristic 
optimization algorithms is to ensure a balance between the 
two phases of the algorithm, called exploration and 
exploration of the search area. If the number of flames were 
fixed during the running of the algorithm, this could lead to 
insufficient exploration of the best solutions obtained so far. 
To avoid this situation, the number of flames is changed 
and decreases with the duration of the algorithm. This 
provides the best solutions received from a total exploration 
of its area. Solutions to the optimization issue are found 
under the influence of the best solution (flames) on the 
search process performed by the population. The flames 
are the best answer received so far, ranked applied to the 
ranking of the cost function. 

The maximum iteration level, the number of variables, 
the number of moths (search agents) in the population, and 
the sorting process for moths at each iteration all affect how 
computationally complicated the MFO algorithm is 
[Mirjalili 2015b].  

The population size of moths (N), the maximum number 
of iterations, the number of variables or dimensions of the 
optimization problem, and the parameter logarithmic spiral 
constant, which defines the spiral's form and affects 
convergence behavior, are this algorithm's key parameters 
[Abderazek et al. 2020. 

3 OPTIMIZATION OF THE AWJ CUTTING 
PROCESS 

Abrasive water jet machining uses a high-pressure 
water jet and abrasive particles mixed in a special cutting 
head. The abrasive water jet thus created is directed 
towards the processed material. It is an advanced 
production technique because the process is characterized 
by many more control parameters than other machining 
processes using a traditional cutting tool (turning tool, 
milling cutter, or grinding wheel). It is necessary to evaluate 
the algorithm's speed and precision. This can be performed 
by considering the rate at which the fitness function is 
called, the running time of the algorithm, the number of 
iterations, and the speed at which the calculations are 
completed. Usually, a shorter duration is preferred. 

The measurement of the time required to solve a 
problem of a certain size is one method of comparison of 
algorithms. This can help to identify which method is more 
effective in terms of computation time and running time. 
Moreover, the precision of each algorithm can be 
determined by counting the number of times the evolution 
function or the matching function is used during the 
implementation of the algorithm. Another essential element 
is the number of iterations needed to find an answer. 
Algorithms that are less likely to be iterative tend to be more 
accurate than iterative algorithms that require more 
iterations. By analyzing the results of each algorithm's 
answer, it is possible to assess how accurate the algorithm 
is. The algorithm's precision, however, can vary depending 
on the problem being solved. A simpler algorithm is often 
regarded as better. This is because the simpler algorithms 
are easier to understand and evaluate and may be less 
prone to implementing errors or other problems. Moreover, 
simpler algorithms often operate faster and use fewer 
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computing resources, which can be a key factor in some 
applications. The number of parameters, the number of 
times a step is required, and the amount of computing 
resources required to execute an algorithm are major 
factors when it comes to comparing the two algorithms' 
complexity. 

The results presented in the paper were obtained using 
the Simulink software, which is part of the MATLAB 
numerical package by MathWorks [A Matlab 2024]. With 
the program, users may simply way input the goal function, 
upper and lower boundaries for the variables, number of 
variables, maximum iterations, number of search agents, 
and number of variables [Mirjalili 2015a]. The specific 
settings suggested by the algorithm's developers were kept 
for each algorithm's particular parameters [Abderazek et al. 
2020], presented in Tab. 2. 

For analyzed topics, the input data and their ranges are 
as follows:  

x1 – the first parameter is water nozzle diameter in the 
range [0.25, 0.33], 

x2 – the second parameter is abrasive concentration [%], 

range [15, 22.5], 
x3 – the third parameter is traverse speed in the range 

[2.0, 6.0]. 
 

Tab. 2: Parameters of ALO, GWO and MFO algorithms  

Name Parameter Value 

ALO  np and tmax  [0, 1] 

GWO Parameter a [2, 0] 

MFO Logarithmic spiral constant b 1 

 
The cost function obtained using the RSM response 

surface method [Perec, Radomska-Zalas, et al. 2023], 
[Perec et al. 2024] has three variables and has the following 
form: 

𝐶 = 13.7 − 663𝑥1 + 14.14𝑥2 − 3.06𝑥3 + 1499𝑥1
2  − 0.37𝑥2

2 − 0.38𝑥3
2   (5) 

The maximum value of the cutting depth corresponded 
to the cost function had the lowest value of -87.2856 was 
equal to x1 = 0.33, x2 = 19.3434, x3 = 2. 
Figure 5 shows a comparison of all three algorithms studied 
for the problem under consideration in the chart form of the 
impact of the number of iterations, and the number of 
search agents on the calculated value of the cost function. 
For the GWO and MFO algorithm for the number of search 
agents greater than m=10, all three solutions converge after 
just five iterations. The ALO algorithm requires more search 
agents to obtain a more accurate solution. For more search 
agents, the MFO algorithm converges to a solution just as 
fast as the GWO algorithm. However, the differences are 
not significant, and all algorithms work with sufficient 
accuracy and speed. Considering fewer iterations, the 
GWO algorithm is more accurate than the ALO algorithm. 
For the number of iterations greater than m=30, the results 
are identical. The extremum values for each algorithm are 
shown in Tab. 3.  

 

Tab. 3: Comparison of extremum calculation effects. 

Algorithm 
Number 

of 
iterations 

Nozzle 
Diameter 

[mm] 

Abrasive 
Concentration  

[%] 

Traverse 
Speed 
[m/s] 

Cost 
function 

[mm] 

ALO 100 0.33 19.3434 2 -87.47378 

GWO 100 0.33 19.3425 2 -87.47376 

MFO 100 0.33 19.3423 2 -87.47375 

 

 

a) 

 

b) 

 

c) 

Fig. 5. The example results of influence iteration number 
on the cost function value for the following search agent 

numbers: a) m=5, b) m=10, c) m=30 

4 CONCLUSIONS 

It may be inferred from the comparison of the simulation 
results with the findings of earlier studies that the chosen 
algorithms have good efficiency in solving the problem of 
optimizing parameters for the process of cutting materials 
by abrasive water jet. The analysis of the results found the 
optimal set of control factors process to the achievement 
of higher cutting depth: 

 water nozzle diameter: 0.33 mm, 

 abrasive concentration: 19.34%, 

 traverse speed: 2.0 mm/s. 
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The depth of the cut surface with such process 
parameters reaches the value of 87.47 mm. The accuracy 
of the algorithm ALO and GWO for the small number of 
agents is better in comparison to the MFO algorithm.  

All considered algorithms achieved optimal cutting 
performance but differed in accuracy and convergence 
speed. The Grey Wolf Optimizer and Ant Lion Optimization 
outperform MFO in precision, especially with smaller agent 
populations. GWO offers the best trade-off between 
convergence speed and computational cost, performing 
well with fewer iterations and search agents. MFO performs 
similarly to GWO but requires fewer evaluations in some 
cases, making it computationally efficient. ALO has a higher 
computational cost due to slower convergence, but it excels 
in avoiding local optima with more search agents. 

The calculations of the selected algorithms were 
considered by listing the function costs for each, examined 
by the data of the iteration step values. Grounded on the 
effects of the analysis, it can be determined that all selected 
algorithms pose a basis for individual effectiveness in the 
case study. All these algorithms are metaheuristic 
population-based, making it difficult for the algorithm to get 
stuck in a local optimum. Similar optimization results were 
achieved using other metaheuristic algorithms [Kawecka 
2023]. 

All the used algorithms: the Ant Lion Optimization (ALO) 
algorithm, Gray Wolf Optimization (GWO), and Moth Flame 
Algorithm (MFO) are all good additions to optimization 
tools. The algorithm is simple to use due to the small 
number of factors that can be changed and to be tuned to 
obtain a good solution. The algorithm is also easy to 
understand and implement.  

In future research, the integration of a constraint-
handling technique is necessary with the optimizer to solve 
the limitations of the external penalty method (death 
penalty) used in the algorithm. Among the constraint-
handling methods known from the literature [Mirjalili 2015a], 
the following are considered: hybrid approaches, repair 
algorithms, punishment functions, special operators, and 
the division of goals and restrictions. 
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