

MM SCIENCE JOURNAL I 2024 I NOVEMBER

7764

EDUCATIONAL MODEL OF
THE ROBOT

BOHDAN FETSO1, MICHAL KELEMEN1, TATIANA

KELEMENOVA1, IVAN VIRGALA1, ĽUBICA MIKOVA1, ERIK

PRADA1, MARTIN VARGA1, PETER JAN SINCAK1, LEO BRADA1

1Technical University of Kosice, Faculty of Mechanical
Engineering, Kosice, Slovakia

DOI: 10.17973/MMSJ.2024_11_2024053

michal.kelemen@tuke.sk

The article deals with the design of the educational model of
the robot, where, in addition to kinematics, the control system
of the robot and the simulation of the robot's activity in the
GAZEBO environment are also addressed. Students can train
different control algorithms on this model. At the same time, a
graphical interface for simulating the robot's activity is also
created. The control system is composed of a low-cost
embedded Arduino system, which is very easy to program and
create control systems. Simulations and experiments showed
the correctness of the design methodology of such a robot
model.

KEYWORDS
Robot, kinematics, control system, manipulator, mechanism

1 INTRODUCTION

The development of production process management
methodology has now significantly accelerated and streamlined
the quality of many industrial processes, in which modern
management methods and algorithms have played a significant
role. It is mainly due to the development of control systems,
sensors and communication systems that can optimally control
industrial processes in real-time with high accuracy and quality
[Wang 2021, Krenicky 2022]. Therefore, robotics is an integral
part of product development. A robot is an artificial agent,
which means that it serves as a substitute for a person while
doing the things for which it is intended. The word "robot" first
appeared in 1920 in the drama of the Czech novelist Karel
Capek entitled "Rossum's Universal Robots". Although in
fiction, robots usually look like humans, in reality, most robots
do not, but they are machines controlled by a computer
program and electronic circuits.
Robots are beneficial and necessary in the industry because
they do a lot of repetitive tasks, dangerous and tedious work
instead of people. They are complex systems that require
almost all information technology and electrical engineering
branches to function correctly. Modern control system
components and control algorithms have enabled robotics to
research and develop robots with an extensive range of
applications in various areas of industry. In addition to
industrial production, robotics also appears in healthcare,
research, film production, construction, and households.
This work focuses on the types of robots mainly used in
industry and has a mechanical structure suitable for handling
objects [Zhong 2006]. These types of robots are denoted as
industrial manipulators. The work presents what robotics is,
what mechanical structures of robots exist and how they are
controlled. Furthermore, basic procedures for calculating
mathematical models that control robots and procedures for
configuring the hardware structure to control mechanical parts
will be presented.
One of the vital areas for developing and applying robotic
systems is parallel robots, which use cables to achieve

movement. This work allows looking deeper into the topic of
these types of robots, their advantages over other types of
manipulators and what challenges they face. A robot of this
kind was chosen for the practical part of this work. Easily
accessible software and hardware components were used to
assemble such a robot.

2 ROBOT CONFIGURATION DESIGN

The robot manipulator uses three servo motors with mounted
arm links (shoulder and elbow). In addition, an end effector is
placed on the tip of the robot wrist, which has an articulated
connection with the robot arm and base. This connection is
required for the robot's end effector to keep a stable horizontal
position relative to a surface on which the robot's base is
mounted [Krenicky 2022].
The dimensions of the robot are approximately
310.36×124×257 mm, see Figure 1. The maximum designed
load capacity of the robot that it should be able to handle is
approximately 0.5 kilograms. Its task will be to perform
movements set by the operator, grip and move objects with the
end effector.

Figure 1. Construction and dimensioning of the robot

3 ROBOT CONTROL AND SIMULATION

To control a robot, we need to create its kinematic model. That
is at least its inverse kinematics. Then there is a need to select
how the calculated values will be sent to the individual motors,
i.e., connect the outputs of the kinematic model to a particular
network. When considering how this will be achieved, it is good
to examine the options available properly [Bozek 2023]. The
following section will show what results were found when
searching for a solution.
Simulation is a crucial phase in the design of any robot.
Simulators allow us to quickly test new designs and see how
this implementation fits the design before starting the hard
work of designing a real robot. It can be risky for robots if the
designer has designed a model that has not been tested in the
simulation. The robot can be unreliable if some parameters are
not considered.
Various software platforms have been developed to study
spatial serial and parallel robots, using the ROS (Robotic
Operating System) control and simulation software. Examples
of such existing platforms are MATLAB/Simulink and ZeroSim.
These platforms are flexible for the possibility of adding their
serial and parallel robots of various types, and it is possible to
extend them with other algorithms. However, Gazebo is the
ROS-integrated simulation platform for studying any type of
robot. It allows creating and analysing of any parallel robot with
the ability to customise algorithms.
With Gazebo, it is possible to use different simulation engines.
ODE (Open Dynamics Engine) is the default. It also supports
Bullet (Bullet Real-Time Physics Simulation), but currently, not

MM SCIENCE JOURNAL I 2024 I NOVEMBER

7765

all features. Therefore, using Bullet as an extension for Gazebo
is better for kinematic calculation and simulation.
The current version of the platform includes analytical tools for
each of the following areas:
• Dynamics and control
• Motion and sensor control
• Kinematics

o Direct kinematics
o Inverse kinematics

• Workspace analysis
• Design optimisation
It also offers a graphical interface for a complex solution,
making the selection of a given robot and kinematic model and
the control and triggering of movements very simple.
A new parallel robot model can be added to Gazebo by
specifying it in semi-structured XML data files. There are four
main files, robot.urdf, config.xacro, spawn.launch and
empty.world. Robot.urdf defines the robot body, links, and
joints. Config.xacro contains a set of link layouts, connection
points of joints, and properties. Spawn.launch is a set of how
files must load in Gazebo and Rviz, set properties for
corresponding features of the robot through the files
mentioned earlier and apply any additional configuration files.
Finally, empty.world is a world that surrounds the robot. It is
required for the robot to spawn on the ground underneath
instead of endlessly falling in the simulation. The simulation can
have more results. The most interesting result that can be used
for hardware implementation is the generated collision boxes
of the robot links. It allows to properly model robot parts and
avoids possible jamming. Orientation of each DOF is generated
using inverse kinematics. The simulator calculates the circular
degree of its joints for each robot's position during the
execution of the trajectory and saves them in a table in
chronological order.
The Gazebo is primarily a simulation platform and does not
offer a hardware implementation but leaves room for it to be
extended. It offers source code methods and protocols
developers can use to utilise simulation results for actual
deployment to an existing robot. ROS is one of the best existing
means of connecting robotic hardware, which provides a well-
supported interface for expansion and integration with Gazebo.
In this way, it is convenient to set up easy-to-use robotic
hardware and take advantage of the flexibility and robustness
of Gazebo.
The Arduino platform will be used for solving this work for
hardware implementation. In this way, it is best to use object-
oriented principles of the C++ program to cooperate with the
Arduino board. Arduino creates an algorithm in which all
processes are connected in a loop mode. Any node in the
system works with other nodes in synchronisation. Figure 2
shows a simplified Arduino program architecture for the robot.
Nodes represent the processes in which the calculations are
performed. A system of numerous nodes is created on the
Arduino to control various functions. It is better to have
numerous nodes that provide only one function than one
complex node that creates everything in the system. The
program is flashed on the Arduino board through the USB
interface via the Arduino IDE or Arduino CLI user programs.
A program written in C++ is used on the PC to control Arduino,
which establishes the connections between the PC and the
Arduino board and allows them to communicate. This main
program is only for communication between the user and the
robot and does not contain a program to control the robot's
servo motors.
The communication programs on the PC and Arduino
communicate by sending messages over a USB serial port. The

input contains data that gives Arduino information about which
servo motor needs to change position and by what amount.

Figure 2. Architecture of the Arduino program
Robot Control System (RCS) is a flexible robot control software
for real-time positioning and setting specific pre-built
applications for the robot to work with (Figure 3). It is designed
to be compatible specifically with the robot for this thesis, but
it is possible to reconfigure the application to use it on other
robot configurations that use the Arduino board as the central
controller. The RCS is a collection of tools and libraries aimed at
simplifying the task of creating complex and robust robot
behaviours and robot architectures. Its structure consists of
many nodes that communicate with each other using the
object-oriented programming language C++ principles.

Figure 3. RCS primary control window

4 ROBOT HARDWARE TOPOLOGY

The robot model described in the preceding section was used
to design its hardware topology. Easily accessible and cost-
effective hardware components are proposed for the solution.
In the proposed solution, it was necessary to divide the task of
one component into two or more hardware that works
together as one.
The control unit consists of a network-connected desktop
computer-controlled by the operator, who defines the robot's
operation. For simulation, Gazebo will be communicating with
ROS through the local host of the computer. At the same time,
the Arduino board attached to the robot frame will be

MM SCIENCE JOURNAL I 2024 I NOVEMBER

7766

connected to the computer via a USB interface. Furthermore, it
will be communicating with special written control software.
This application waits for a user's input, later sent from the
computer, to calculate motor commands on the running
Arduino node. The Arduino microcontroller, while connected,
executes the motor commands it received through the direct
servo motor connections. The next chapter describes more
information about connecting and operating the robot in terms
of hardware and software.

5 ROBOT MANIPULATION CONFIGURATION

The ROS and Gazebo source code is open-source and published
on the GitHub website, offering downloadable and cloning
options. Due to the constant development of this simulator,
any user can install it on a computer and receive new release
updates with new functions and bug fixes. Furthermore, it will
provide access to the latest features and AI algorithms. The
simulator can be launched from Ubuntu using a script that is
opened in a terminal.
A new robot can be created and configured using Unified
Robotic Description Format (URDF) files. URDF is a universal
and open format for robot configurations (similar to SDF, XML).
URDF is a simple format that does not carry information about
the appearance of a robot but only about its content.
The physical properties of the robot's body, links and joints are
defined in the robot.urdf file. The following code will show the
basic structure of the robot.urdf file with the data of the robot
manipulator of this work (Figure 4).
The contents of the robot.urdf file is enclosed with a </robot>
tag, containing at least one link tagged with arm_link. By link is
meant the body structure of the simulated robot. Within the
tag, the geometric dimensions of the robot parts are given in
the order they will be built during the robot simulation. Other
tags define the properties of the end effector and arm joints,
including the minimum and maximum possible angle
orientation and their geometrical representations.

Figure 4. Sample code snippet of the robot.urdf file

Body positions and properties are defined in the config.xacro
file. It is necessary to define the exact positions of endpoints in
each part. For example, a point that connects the base with the
shoulder and provides a vertical rotation for the robot. The
maximum load capacity of the end effector is also defined, and
the minimum force must be applied to the joint point. The
following code shows a file structure that configures the robot
manipulator of this project as can be seen on Figure 5.
The file precisely defines the arrangement of the links across
multiple tags. For example, the link positions and collisions are
indicated in the visual and collision tags of the origin tag. In
addition, each joint has its tag and other mandatory tags within
it that specify its properties. Such mandatory properties are a

type of a joint (i.e. revolute, fixed, prismatic), its position,
parent body and interaction between parent and child objects.

Figure 5. Configuration of the robotic arm in the config.xacro file

These files describing the robot model must be set up correctly
so that the robot model can be inserted into the simulator. It is
possible to examine whether the model has been defined
correctly in ROS. After each simulator initialisation, the
available robot models are loaded. Through the graphical
interface Gazebo, it is possible to select the robot model with
which work must be done according to the name entered in the
file (Figure 6). In the displayed robot model area, it is possible
to quickly check whether the entered information has been
correct.

Figure 6. Gazebo graphical interface with the loaded robot

Within the Arduino, robot trajectories can be programmed. The
determination of one trajectory is possible inside a particular
matrix, which is sent to Arduino for processing. The individual
degree values are entered into this matrix, determining the end
effector x, y, and z positions, respectively, the robot's
orientation. These points are preprogrammed inside the point
tagging field of the Arduino program. Adding a value with the
servo motor speed attribute to the end value makes it possible
to specify how long the robot should go from one point to
another. In the simulation sample, the robot starts from the
starting point and rotates 45 degrees left and moves forward
by 30 cm for five seconds (Fig. 7).
In the spawn.launch file; it is possible to manually set initial
options for the simulation, i.e., the configuration files of a
trajectory generation for the robot (Figure 8). Within a
joint_state_publisher node, ROS automatically defines multiple
joint positions, each under its name, specified in the robot.urdf
file (Figure 9). Each joint state has to be specified inside the
URDF file of the robot under a joint tag. Inside the tag is
declared a name of a respective joint and its type (i.e., revolute,
continuous, prismatic, et cetera). After defining the root tag,
the position of robot links relative to each other must be

MM SCIENCE JOURNAL I 2024 I NOVEMBER

7767

specified in the origin tag. Then, the individual connection
points x, y, and z must be inserted. Finally, roll, pitch and yaw
parameters are set using r, p and y.

Figure 7. Trajectory generation of the robot

Figure 8. Configuration of the spawn.launch file

After those parameters, a parent and a child link must be set. It
ensures that the links are held together in a tree-manner
structure. In the case of the figure example, a connection
between the robot's shoulder and main arm link is shown.
Then, inside the axis parameter, the direction of the rotation is
selected for the revolute joint. Finally, in the limit tag, specific
velocity and degree limits of the rotation can be set. They are
not mandatory, but they help ensure that the robot arm has
the same limits as the actual model.

Figure 9. Example of a defined joint

After setting up all the necessary files, it is possible to select the
trajectory and set the kinematic model processing in Rviz for
the Gazebo simulation. This project will show how the
simulator generates movement using an inverse kinematics
solver. Therefore, the option of the solver an LMA kinematics
plugin is selected. This plugin obeys joint limits specified in the
URDF (and will use the safety limits if specified in the URDF).
ROS only calls the inverse kinematics solver for one pose (it
may occur multiple times if the first result is invalid, i.e., due to
self-collisions). This solution provides a joint configuration for
the Rviz. ROS already knows the current joint configuration
from the URDF file and a preset default position. Thus, all
trajectory planning and execution at that point is done in a joint
space inside Rviz. Collision detection and constraint checking
may use inverse kinematics to determine any subgoal joint
configuration pose, but the planning is not done in Cartesian
space. After a joint trajectory is found, ROS tries to smooth the
trajectory to make it less jittering moving, but this does not
always result in a path that is the fastest one.
A unique software application was made to control the robot
manipulator. This program is created using the native Win32
programming blocks from Windows OS and the open-source
Arduino serial library, securing communication between the

app and the Arduino board. Since this application uses C++
programming language, it has exact mechanisms for declaring
libraries using #include as the Arduino program. However, the
list of libraries is different because distinct functions are
required for this application to work correctly (Figure 10).
Additionally, in C++, it is recommended to use so-called
namespaces. A namespace is a declarative section that delivers
a scope to the descriptors (such as names of types, functions,
variables). They unite code into logical clusters and avoid name
collisions that can transpire mainly when the codebase contains
multiple libraries. Furthermore, all identifiers at namespace
scope are visible to one another without qualification.

Figure 10. Library declaring in RCS source code

The code snippet in Figure 11 shows how the connection
between Arduino and the program is established. Firstly,
primary input and output variables are created to guarantee
the possibility of data transfer. They also pass the
MAX_DATA_LENGTH argument, which gives the ability for the
C++ application to send more than 255 character messages to
the Arduino. Next, a variable pointer is created, which holds an
address to the Arduino COM port. For a C++ program, a
computer's memory is like a series of memory blocks, each one
byte in size and respectively with a unique address. These
single-byte memory blocks are ordered in a way that allows
data representations larger than one byte to occupy memory
that has consecutive addresses. A fascinating property of
pointers is that they can be used to access the variable they
point to directly. This property is done by preceding the pointer
name with the dereference operator (*). The operator itself can
be read as "value pointed to by".

Figure 11. RCS serial connection code

In order to receive and process the track bar value from the
window process, the LRESULT function is used with a
TBM_GETPOS method (Figure 12). This method retrieves the
current logical position of the slider in a trackbar. The logical
positions are the integer values in the trackbar's minimum to
maximum slider positions range. Then this position is stored in
the variable of the future corresponding servo motor location.
If they are in the range of the allowed area on the track bar
itself, they get stored in the continuous variables, which will be
passed into the verification function later on.

Figure 12. RCS track bar operation code

A simple conditional statement is set to verify the correctness
of the received data and process it back to a send function.
First, it checks if the data was changed compared to the old
received data. Then, the corresponding data passes to the
callback and gets processed in the messaging function if it was
altered (Figure 13).

MM SCIENCE JOURNAL I 2024 I NOVEMBER

7768

The message handling function (Figure 14) consists of an array
building variable, which processes received data into a
character array. This variable is calculated in size to ensure no
data leak and parsed additionally inside the Arduino program to
ensure the integrity of the received data.

Figure 13. Snippet of verification function code

Figure 14. RCS message sending function code

Then the data is sent to the Arduino board using
arduino.writeSerialPort(), which passes the charArray and
removes the 255 character limitation of the sent data. Finally,
in C++, memory can be managed manually. Therefore,
removing the character array after it was used to free up the
declared memory and prevent any possible memory leaks is a
beneficial practice to do it. Also, this prevents any possible
variable distortion after the new cycle of the arduinoSend()
function begins.
In the following subchapters, tests will be done, demonstrating
both Gazebo simulation and actual robot movement using the
RCS software.

6 SIMULATION WITH GAZEBO

In order to launch the Gazebo simulation of this project, first, a
terminal window needs to be opened inside Ubuntu OS (Figure
15). Then a project directory has to be selected to make it
easier to execute ROS commands. This selection is made via the
Linux command cd (change directory) and the path to the
project folder, which must be separated with a slash (/) symbol
for each subfolder. Next, a source file has to be loaded to the
bash environment. After compiling a ROS package for this
project, this file was obtained and is located in the devel
directory.

Figure 15. Ubuntu terminal with the executed launching commands

Finally, the simulation can start with a roslaunch command with
specified arguments of the project's name and which launch file
to load. When all these commands are executed in this order,
Gazebo and Rviz windows open up on the screen after loading.

Figure 16. Gazebo and Rviz simulation windows

Then, automatically, the robot files are loaded, and its model
with configurations gets displayed in both programs, see Figure
16. On the control panel are shown robot controls. Here can be
selected which planning groups will be transformed for the
trajectory generation and which kinematic module will be used
to generate coordinates for the robot's joints. Furthermore,
path-planning can be done in several ways, for example,
directly dragging the robot's end effector on a specific position
or selecting a joint tab and manually inputting degree values for
the respective joints (Figure 17). Finally, the hand-operated
angle method can be used as an additional controlling unit for
the RCS application. As it will help determine trackbar positions
for the anticipated manipulator orientation.

Figure 17. Rviz manual degree setting for the robot's joints

MM SCIENCE JOURNAL I 2024 I NOVEMBER

7769

Figure 18. Gazebo robot movement simulation with Rviz

The first test is moving the end effector manually. This motion
is made either with arrows forming a Cartesian coordinate
system or a blue sphere, indicating the end effector location.
Figure 18 shows how inside the Rviz window, the robot arm is
moved in a specific direction and how Gazebo simulates the
movement in the same direction using inverse kinematics
planning.
As shown above, the robot can move just in any direction
commanded by Rviz. However, all motion is restricted to avoid
exceeding restricted maximal joint angles. These constraints
are set in the same way as the actual robot model's limitation,
thus ensuring the correctness of the simulation data.
Furthermore, it is possible to insert different objects into the
Gazebo simulation to simulate a robot's environment (Fig. 19).

Figure 19. Robot's environment simulation

Figure 19 shows how different geometrical objects are
generated inside the simulation window.
This potential makes it possible to create industrial
surroundings for the manipulator with collisions and physics.
Furthermore, it is possible to generate a trajectory motion for
the end effector that avoids hitting obstacles on its way.

7 ROBOT CONTROL SYSTEM TEST

This test requires the actual robot to be present and connected
to the host computer with the robot control system (RCS)
application installed. The manipulator's Arduino board has a
USB type B port. It will connect the robot directly with a cable
to any available computer USB. However, by default, the
computer will not be able to operate with the board. Thus, an
official Arduino driver must be installed to ensure the proper
robot operation. Then the RCS application can be launched by
simply double-clicking the executable file (Figure 20).

Figure 20. Robot Control System executable

A greeting window will appear on a user's monitor when
everything is installed correctly. In addition, the RCS has a robot
state notification, which allows the user to see if the robot is
connected to the system (Figure 21).

Figure 21. Robot Control System verification

Furthermore, if the connection is suddenly interrupted, RCS will
change the state and notify the user about disconnection. If the
connection gets re-established, the program automatically
proceeds with its workflow.
Next, motion planning can be started with the robot connected
to the computer and RCS launched. Each servo motor joint was
given a respective name and listed in the same order as the
kinematic chain of the Gazebo simulation. Finally, several
positioning tests were made and are demonstrated in Figure
22. Moreover, in this figure, the fourth section demonstrates
how the end effector works by holding a king’s chess piece. On
this scale, the end effector is powerful enough to hold more
challenging objects, for example, screws, nuts, small wood and
metal plates.

8 CONCLUSIONS

Faster and more accurate algorithms have a significant impact
on the overall operation of the robot. For example, choosing a
more precise kinematics calculation module could make the
robot even more stable. The friction and bending that occurs
when the robot bends over the longest point significantly affect
the shaking and, thus, the overall system's stability.
With minor alterations to the hardware and software, such a
robot could be even more stable and thus suitable for activities
that require more precise movements, such as a small conveyor
manipulator. So far, such a robot is suitable for moving smaller
objects, which can be helpful for personal use, for example,
sorting, object handling, and other automation processes.
The robot's interface could be extended to accept commands in
multiple forms. For example, it could be controlled via a real-
time Gazebo ROS simulation, where the manipulator would
directly take commands for each incoming move from ROS,
thus performing complicated movements.

MM SCIENCE JOURNAL I 2024 I NOVEMBER

7770

Figure 22. Robot movement test with RCS

The development of similar applications will certainly help to
improve the knowledge, abilities and skills of students and
graduates [Bozek 2012, 2016 & 2021, Bezak 2014, Koniar 2014,
Mikova 2014, Ostertag 2014, Kelemen 2018 & 2021, Liptak
2018, Pavlasek 2018, Zidek 2018, Saga 2019 & 2020, Tlach
2019, Oscadal 2020, Kelemenova 2021, Kuric 2021, Virgala
2012, 2014a,b & 2021, Vagas 2022, Bratan 2023, Vagas 2023 &
2024, Romancik 2024]. To control these models and systems, it
is necessary to create a control unit with a microcontroller to
effectively use the capabilities of this actuator [Kelemen 2012 &
2014].

ACKNOWLEDGMENTS

The authors would like to thank the Slovak Grant Agency—
project KEGA 027TUKE-4/2022, VEGA 1/0201/21 and VEGA
1/0436/22.

REFERENCES

[Bezak 2014] Bezak, P., et al. Advanced Robotic Grasping
System Using Deep Learning. Procedia Engineering,
2014, Vol. 96, pp. 10-20. ISSN 1877-7058.
https://doi.org/10.1016/j.proeng.2014.12.092.

[Bozek 2012] Bozek, P., Pivarciova, E. Registration of
Holographic Images Based on Integral
Transformation. Computing and Informatics, 2012,
Vol. 31, No. 6, pp. 1369-1383.

[Bozek 2016] Bozek, P., et al. Geometrical Method for
Increasing Precision of Machine Building Parts.
Procedia Engineering, 2016, Vol. 149, pp. 576-580.
https://doi.org/10.1016/j.proeng.2016.06.708.

[Bozek 2021] Bozek, P., Krenicky, T., Nikitin, Y. Editorial for
Special Issue “Automation and Robotics: Latest
Achievements, Challenges and Prospects”. Appl.

Sci., 2021, Vol. 11, 12039.
https://doi.org/10.3390/app112412039.

[Bozek 2023] Bozek, P., Krenicky, T., Prajova, V. Digital
Induction Motor Model Based on the Finite Element
Method. Applied Sciences, 2023, Vol. 13, No. 8,
5124. https://doi.org/10.3390/app13085124.

[Bratan 2023] Bratan, S., Sagova, Z., Saga, M., Yakimovich, B.,
Kuric, I. New Calculation Methodology of the
Operations Number of Cold Rolling Rolls Fine
Grinding. Applied Sciences, 2023, Vol. 13, No. 6.
eISSN 2076-3417, DOI: 10.3390/app13063484.

[Kelemen 2012] Kelemen, M., et al. Design and Development of
Lift Didactic Model within Subjects of Mechatronics.
Procedia Engineering, 2012, Vol. 48, pp. 280-286.
DOI: 10.1016/J.PROENG.2012.09.515.

[Kelemen 2014] Kelemen, M., et al. Rapid Control Prototyping
of Embedded Systems Based on Microcontroller.
Procedia Engineering, 2014, Vol. 96, Iss. 11, pp. 215-
220. https://doi.org/10.1016/j.proeng.2014.12.146.

[Kelemen 2015] Kelemen, M., et al. Experimental Verification
of the Shape Memory Alloy (SMA) Spring Actuator
for Application on In-Pipe Machine. Metalurgija,
2015, Vol. 54, No. 1, pp. 173-176. ISSN 0543-5846.

[Kelemen 2018] Kelemen, M., et al. A Novel Approach for a
Inverse Kinematics Solution of a Redundant
Manipulator. Applied Sciences, 2018, Vol. 8, Issue
11, pp. 1-20. https://doi.org/10.3390/app8112229.

[Kelemen 2021] Kelemen, M., et al. Head on Hall Effect Sensor
Arrangement for Displacement Measurement. MM
Science Journal, 2021, Vol. Oct., Issue 11, pp. 4757-
4763. DOI: 10.17973/MMSJ.2021_10_2021026.

[Kelemenova 2021] Kelemenova, T., et al. Verification of Force
Transducer for Direct and Indirect Measurements.
MM Science J., 2021, Vol. Oct., Issue 11, pp. 4736-
4742. DOI: 10.17973/MMSJ.2021_10_2021021.

[Koniar 2014] Koniar, D., et al. Virtual Instrumentation for
Visual Inspection in Mechatronic Applications.
Procedia Engineering, 2014, Vol. 96, pp. 227-234.
DOI: 10.1016/j.proeng.2014.12.148.

[Krenicky 2022] Krenicky, T., Nikitin, Y., Bozek, P. Model-Based
Design of Induction Motor Control System in
MATLAB. Appl. Sci., 2022, Vol. 12, 11957.

[Krenicky 2022] Krenicky, T., Olejarova, S., Servatka, M.
Assessment of the Influence of Selected
Technological Parameters on the Morphology
Parameters of the Cutting Surfaces of the Hardox
500 Material Cut by Abrasive Water Jet Technology.
Materials, 2022, Vol. 15, 1381.

[Kuric 2021] Kuric, I., et al. Analysis of Diagnostic Methods and
Energy of Production Systems Drives. Processes,
2021, Vol. 9, 843. doi.org/10.3390/pr9050843.

[Liptak 2018] Liptak, T., et al. Modeling and control of two-link
snake. International Journal of Advanced Robotic
Systems, 2018, Vol. 15, Issue 2, pp. 1-13. DOI:
10.1177/1729881418760638.

[Mikova 2014] Mikova, L., et al. Simulation Model of
Manipulator for Model Based Design. Applied
Mechanics and Materials, 2014, Vol. 611, No. 1, pp.
175-182. https://doi.org/10.4028/
www.scientific.net/AMM.611.175.

[Mikova 2015] Mikova, L., et al. Application of Shape Memory
Alloy (SMA) as Actuator. Metalurgija, 2015, Vol. 54,
No. 1, pp. 169-172. ISSN 0543-5846.

[Oscadal 2020] Oscadal, P., et al. Improved Pose Estimation of
Aruco Tags Using a Novel 3D Placement Strategy.

https://doi.org/10.3390/app112412039
https://doi.org/10.3390/app13085124

MM SCIENCE JOURNAL I 2024 I NOVEMBER

7771

Sensors, 2020, Vol. 20, Issue 17, pp. 1-16. ISSN
1424-3210. DOI: 10.3390/S20174825.

[Ostertag 2014] Ostertag, O., et al. Miniature Mobile Bristled
In-Pipe Machine. International J. of Advanced
Robotic Systems, 2014, Vol. 11, pp. 1-9. ISSN 1729-
8806. https://doi.org/10.5772/59499.

[Pavlasek 2018] Pavlasek, P., et al. Flexible Education
Environment: Learning Style Insights to Increase
Engineering Students Key Competences. Edulearn18
Proceedings, 2018.

[Romancik 2024] Romancik, J., et al. Design, Implementation,
And Testing of a 3D printed Gripper Actuated by
Nitinol Springs. MM Science J., Vol. June, pp. 7352-
7356. DOI: 10.17973/MMSJ.2024_06_2024009.

[Saga 2019] Saga, M., et al. Contribution to Random Vibration
Numerical Simulation and Optimisation of
Nonlinear Mechanical Systems. Sci. J. of Silesian
Uni. of Technology-Series Transport, 2019, Vol. 103,
pp. 143-154. DOI: 10.20858/sjsutst.2019.103.11.

[Saga 2020] Saga, M., et al. Case study: Performance analysis
and development of robotized screwing application
with integrated vision sensing system for
automotive industry. International J. of Advanced
Robotic Systems, 2020, Vol. 17, No. 3, pp. 1-23.
https://doi.org/10.1177/1729881420923997.

[Tlach 2019] Tlach, V., et al. Collaborative assembly task
realization using selected type of a human-robot
interaction. Transportation Research Procedia,
2019, Vol. 40, pp. 541-547. DOI:
10.1016/j.trpro.2019.07.078, 2019.

[Vagas 2022] Vagas, M., et al. Testing of Ethernet-based
communication between control PLC and
collaborative mechatronic system. In: 20th Int. Conf.
on Mechatronics (ME). Pilsen, Czech Republic, 2022.
DOI: 10.1109/ME54704.2022.9983428.

[Vagas 2023] Vagas, M., et al. Calibration of an intuitive
machine vision system based on an external high-
performance image processing unit. In: 24th
International Conference on Process Control (PC),

Strbske Pleso, Slovakia, 2023, pp. 186-191. DOI:
10.1109/PC58330.2023.10217606.

[Vagas 2024] Vagas, M., et al. Implementation of IO-the
Handling and Sorting Sub-Station of the Festo FMS
500 Automated Line. MM Science Journal, 2024,
Vol. June, pp. 7348-7351. DOI:
10.17973/MMSJ.2024_06_2024008.

[Virgala 2012] Virgala, I., et al. Manipulator End-Effector
Position Control. Procedia Eng., 2012, Vol. 48, pp.
684-692. doi.org/10.1016/j.proeng.2012.09.571.

[Virgala 2014a] Virgala, I., et al. Analyzing, Modeling and
Simulation of Humanoid Robot Hand Motion.
Procedia Engineering, 2014, Vol. 611, pp. 75-82.
doi.org/10.4028/www.scientific.net/AMM.611.75.

[Virgala 2014b] Virgala, I., et al. Inverse Kinematic Model of
Humanoid Robot Hand. Applied Mechanics and
Materials, 2014, Vol. 96, pp. 489-499.
https://doi.org/10.1016/j.proeng.2014.12.121.

[Virgala 2021] Virgala, I., et al. A snake robot for locomotion in
a pipe using trapezium-like travelling wave.
Mechanism and Machine Theory, 2021, Vol. 158,
104221. DOI:
10.1016/J.MECHMACHTHEORY.2020.104221.

[Wang 2021] Wang, W., et al. Controlling bending deformation
of a shape memory alloy-based soft planar gripper
to grip deformable objects. International Journal of
Mechanical Sciences, 2021, Vol. 193, No. 1, pp. 1-8.
https://doi.org/10.1016/j.ijmecsci.2020.106181.

[Zidek 2018] Zidek, K., et al. Auxiliary Device for Accurate
Measurement by the Smartvision System. MM
Science Journal, 2018, Volume March, pp. 2136-
2139. DOI: 10.17973/MMSJ.2018_03_201722.

[Zhong 2006] Zhong, Z.W. and Yeong, C.K. Development of a
gripper using SMA wire. Sensors and Actuators A:
Physical, 2006, Vol. 126, Issue 2, pp. 375-381.
https://doi.org/10.1016/j.sna.2005.10.017.

CONTACTS:

Michal Kelemen, Prof. Ing. PhD.
Technical University of Kosice, Faculty of Mechanical Engineering
Institute of Automation, Mechatronics, Robotics and Production Techniques
Letna 9, 04200 Kosice, Slovak Republic
michal.kelemen@tuke.sk

