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The article discusses the technology for automated neural 
network monitoring of the vineyard’s physiological condition. 
Images of leaves, obtained using an unmanned aerial vehicle 
(UAV), are the main indicator of the physiological vineyard’s 
condition. The proposed solution is based on the integrated use 
of convolutional neural network method (CNN) and machine 
vision technologies. To determine the optimal neural network 
(NN) model, a variant analysis was carried out. In accordance 
with its results, the YOLOv7 model was chosen, which satisfies 
the introduced time limit and provides the required detection 
quality. The training of the YOLOv7 neural network was 
implemented in the Python environment using the PyTorch 
framework and the OpenCV computer vision library. The 
dataset consisting of 6320 images of grape leaves (including 
healthy and diseased ones) has been used for neural network 
training. The obtained results showed that the detection 
accuracy is at least 91%. Visualization of monitoring results has 
been carried out using heatmap, allowing to obtain information 
about vineyard physiological condition in dynamics. The 
proposed mathematical model allows to calculate the 
monitored vineyard’s area made by one complex per day. The 
obtained results showed that effective monitoring area using 
one DJI Phantom 4 UAV per day is 2.5 hectares. 
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1 INTRODUCTION  

Mechatronic and robotic assistance systems are currently 
frequently used systems for facilitating human activity in 
several areas. These are mainly areas that are extremely 
laborious and require physical activity, areas that are 
dangerous for people and areas where there is a shortage of 
labor [Kuric 2011, Bozek 2012, Koniar 2014, Abramov 2015, 
Mascenik 2016, Peterka 2020, Klarak 2021, Liu 2021, Orchi 
2021, Peng 2021, Fraiwan 2022, Lin 2022b, Pandian 2022, 
Huang 2023, Vagas 2023, Patiluna 2024]. 
In today's demanding and worsening climate conditions, 
growing agricultural crops is an extremely difficult task. There 
are a large number of risks and threats that cause huge losses 
in agricultural engineering. These are mainly unsuitable and 
deteriorated climatic conditions, lack of irrigation, animal and 
insect pests, diseases, molds, fungi and physiological damages 
and others. However, a serious problem is also the lack of 

workers who could carry out interventions and work activities 
in agriculture. Therefore, there are many research teams 
working on the applications of automation, robotics and digital-
enabled manufacturing technology in agriculture. 
The basic goal is to ensure a sufficient yield of agricultural crops 
with the support of innovative farming techniques. By applying 
these innovative technologies, it is also possible to achieve 
early detection of problem conditions and thus to decide on 
timely intervention in cultivation and thus to reduce losses with 
lower consumption of chemical substances in the cultivation 
process [Karpina 2016, Urban 2021, Kaur 2022, Oliveira 2024, 
Ortiz-Torres 2024, Zvezdina 2024]. 
This article is focused on the viticulture segment, which is 
extremely labor-intensive and errors that could occur in 
activities in this sector could mean huge losses in agricultural 
crop yields. 
The main goal of introducing digital technologies in viticulture is 
to ensure high yields of high-quality table and technical grapes 
by minimizing and optimizing human labor [Sassu 2021, Egorov 
2022]. In particular, these technologies make it possible to 
automate the processes of collecting and analyzing information 
on growing grapes, as well as controlling and optimizing the 
processes of cultivating and caring for grapevines through the 
implementation of effective monitoring technologies 
[Ammoniaci 2021, Tardaguila 2021]. 
The development and reduction in cost of UAV technologies 
have made it possible to increase effectiveness of local 
monitoring and control for agricultural cultivation purposes 
[Mahlein 2016, Tsouros 2019]. In agriculture, UAVs are used for 
various applications viz. remote monitoring [Navia 2016, Arroyo 
2017, Di Gennaro 2016, Honrado 2017, Matese 2017a, Matese 
2017b], biomass production monitoring [Matese 2018], weed 
spreading detection, disease detection [Di Gennaro 2017] and 
others. To achieve these goals, UAVs are equipped with specific 
devices such as video, multispectral or infrared cameras, and 
optionally, high-performance computing devices that allow 
resource-intensive calculations to be performed directly 
onboard, for example, neural network image processing. The 
use of UAV-mounted devices enables the automation of 
processes to determine the phytosanitary condition and 
biophysical characteristics of vine plantations based on photo 
and video data. Additionally, they are effectively utilized to 
calculate relative vegetation indices [Kerkech 2018, Matese 
2018] (for example, NDVI, EVI, GNDVI, CVI, ExGR, GRVI, NDI, 
RGI and others) and for neural network detection of visual 
symptomatic reactions caused by various negative factors 
[Kerkech 2018, Tardif 2023]. 
Timely detection of grapes damage signs made by diseases is a 
very actively developing area of scientific research [Di Gennaro 
2017, Albetis 2017] owing to the fact that timely detection will 
prevent the possible grapevine blight, increase the quantity and 
quality of products, and also localize disease foci. A large 
number of early methods for determining the physiological 
condition of grapes are based on the calculation of vegetation 
indices, biophysical parameters and extracting of spectral 
channels from hyperspectral images. However, they have a 
number of limitations [Kerkech 2018]. Partial overcoming of 
these limitations is possible through the analysis of visible 
symptomatic reactions which are manifested in the form of 
changes in color, shape and size of leaves. 
In most practical cases disease monitoring is done by visual 
inspection using human labor [Liu 2021]. However, such an 
approach is time-consuming and constrains implementation of 
routine monitoring. More challenging way is to develop an 
evidence-based automated system of operational vineyard-
scale monitoring of diseases and biorisks. At this time, the 
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state-of-the-art CNN is believed to be the most effective 
approach to solve this scientific problem due to its wide-spread 
implementation in object detection problem [Wu 2020], face 
recognition [Herrmann 2016], action recognition [Chen 2018], 
weed detection [Bah 2018], plant disease identification [Saleem 
2019], yield estimation [Yang 2019], and precise crop 
classification [Zhong 2020].  
The primary goal of the present study is to develop the method, 
technique and algorithm for vineyard-scale detecting visible 
symptomatic reactions on grape leaves using CNN.  
The main contributions of this article can be summarized as 
follows: 
(1) Development of new techniques and methods based on 
data collection and processing procedures to be performed on 
separate hardware devices (UAV and PC). This approach allows 
the use of stationary GPU-based computing devices to perform 
demanding calculations. 
(2) The YOLOv7 model provides a good balance of accuracy and 
computational efficiency for grape leaf detection with more 
than 90% mAP. This indicates that state-of-the-art deep 
learning methods can successfully detect foliage in a variety of 
field conditions. Using the Deep SORT algorithm for object 
tracking significantly reduced false alarms by avoiding re-
counting leaves in overlapping frames. This step is critical to 
getting an accurate assessment of vine health over time. 
(3) The ability to dynamically monitor the state of the vineyard 
during the growing season allows growers to respond promptly 
to biotic and abiotic stresses. In terms of scalability, the study 
found that a single UAV computer setup could effectively sur-
vey 2.5 hectares per day. This paves the way for adoption by 
small to medium-sized vineyards. 
The remaining sections of this paper are organized as follows: 
Section 2 presents description of the test site, a basic algorithm 
of UAV-based monitoring, reasoning of an optimal CNN 
architecture, as well as characteristics of a test bench and 
procedure of the dataset creation. Section 3 is dedicated to 
variant analysis of CNN architectures to be used in UAV-based 
monitoring, NN training peculiarities and the results of UAV-
based monitoring reinforced with CNN application. In section 4, 
discussion about obtained results is given in this paper part. 
Section 5 summarizes this work and also future research plans 
are also presented. 

2 MATERIALS AND METHODS  

2.1 Description of the site under study 

Testing of the technology was carried out on the vineyard of 
the JSC "Agrofirma Chernomorets", which is situated in Crimea 
Republic, Bakhchisaraysky district, Uglovoye village (Fig. 1). The 
general view of the vineyard on which the video mate-rials 
were collected using UAV. Area of the plot is 72 ha, cultivar is 
black Pinot, planting date is 2007. Planting scheme is 3x3 (0.3) 
m, formation is one-sided cord, high stem, free-hanging shoot, 
rootstock is Berlandier x Riparia Caber-net 5BB. Non-covered, 
drip irrigation system. 
Soil types in plots are ordinary black earth mycelar-carbonate 
foothills. The humus layer is 80 - 90 cm deep. The humus 
content of the upper layers is 2.9–3.6%. Total nitrogen content 
ranges from 0.21% to 0.3%. Hydrolyzable nitrogen content is 5 
– 11 mg/100gr, which indicates the high availability of mobile 
nitrogen. The phosphorus content ranges between 0.07% and 
0.16%. Mobile phosphorus content ranges from 0.5 to 6 
mg/100 grams. The total potassium content in carbonate-rich 
chernozem ranges from 1.1% to 2.6%, and the mobile content 
ranges from 16 to 43 mg/100 grams. The absorption capacity in 
the upper horizons equals 32–39 mg-eq. The profile of micel-

lar-carbonate chernozems was leached from water-soluble salts 
to a depth of 150–200 cm and more. Salinization at these 
depths is sulfate-calcium. 

2.2 Description of the site under study 

In order to achieve the goal, we suggest using technique based 
on application of an automated device for monitoring vineyards 
enhanced by NN method for detecting objects. Comprehensive 
analysis of implementation of a high-performance computing 
module for NN processing of video data showed that the most 
promising solutions are the following: 
1. Allocation of high-performance computing module directly 
on board of the UAV. This variant allows to process the video 
stream from the UAV camera directly during the flight [Halawa 
2017, Bokovoy 2019, Suzen 2020]. However, this variant 
negatively affects the weight and size characteristics and power 
consumption of the UAV. Also, this variant limits the flight 
speed due to the low processing speed of video stream frames. 
It is possible to increase the speed of flight and processing of 
the video stream by implementing a high-performance 
computing device based on programmable logic device (PLD), 
but this solution is rather expensive. 

 
Figure 1. Vineyard of JSC "Agrofirma Chernomorets" 

2. Performing NN data analysis on a stationary high-
performance computing device [Ampatzidis 2020, Aposporis 
2020]. In this variant the UAV is used only for collecting video 
data and does not directly participate in data processing. This 
variant will significantly reduce the cost and speed up data 
collection. This is due to the fact that the UAV will not carry 
additional load. 
The analysis of the variants described above showed that the 
second variant is optimal for automated vineyard-scale 
monitoring of physiological condition and potential biohazard. 
This is due to the fact that it is not required to solve this 
problem in real-time. 
The general scheme of UAV-based monitoring is shown in 
Fig. 2. In accordance with the technology, the UAV must fly 
over each row of the vineyard at least three times in order to 
capture grape leaves from three different views: right side, left 
side, top. The video footage is transferred to a high-
performance computing device with an installed program for 
automatic classification of diseased grape leaves. 
The program automatically counts a number of diseased grape 
leaves in the frame. In accordance with the obtained values, 
visualization is performed in the form of a heat map, which is 
presented as a separate layer in GIS. On the map the color of 
each point corresponds to the number of diseased grape leaves 
counted by the NN and is linked to the coordinates where the 
UAV was shooting the corresponding frame. This procedure is 
necessary for synchronizing the video file and the log of the 
GPS tracker installed on the UAV. 

2.3 Variant analysis of NN models 

For the correct operation of the automated device, it is 
important to choose a NN architecture that will allow the most 
accurate detection of diseased grape leaves. To solve this 
problem, CNN was chosen as that architecture [O’Shea 2015]. 
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This choice can be argued that the NN of this architecture 
demonstrates the highest efficiency of object recognition in 
images compared to alternative architectures [Russakovsky 
2015, Gu 2018, Kuznetsov 2021, Kuznetsov 2022]. Currently, a 
large number of learning models based on CNN have been 
developed: YOLO, EfficientDet, ResNet, and many others [Jiang 
2017, Pham 2020, Zheng 2020, Lin 2022a].  

 
Figure 2. Process of monitoring vineyards using UAV and NN 

We carried out a variant analysis, as a result of which the most 
popular NN models were analyzed for the speed and precision 
of diseased grape leaves detection. To assess the quality of the 
selected NN models and compare different algorithms, the 
following metrics (quality criteria) were used: 
1. Complete Intersection over Union (CIoU) is a loss function 
that estimates the scale of the aspect ratio of a bounding box, 
taking into account the overlap area of the boxes, the distance 
between the center points, and the aspect ratio [41]: 

                                  (1) 

where l1 is the Euclidean distance between the centers of the 
boxes of the detected and target objects; l2 is the length of a 
diagonal of the detected box; α is a balancing factor (1); υ is the 
coefficient of proportional consistency between the boxes of 
the detected and target objects (2). 

                                           (2) 

                                   (3) 

where wgt and hgt are the width and height of the target box; w 
and h are the width and height of the detected object box. 
2. Precision is a metric that reflects the proportion of objects 
correctly detected by the classifier [Ahmad 2020] and 
calculated by the equation: 

                                   (4) 

where TP (True Positive) is the number of objects correctly 
detected by the classifier; FP (False Positive) is a classification 
error that characterizes the number of erroneously detected 
objects by the classifier. 
3. Recall (completeness) is a metric that reflects the proportion 
of objects of the target class correctly detected by the classifier 
from all objects within images to be analyzed. In other words, 
this metric shows how well the NN algorithm finds expected 
objects [Yacouby 2020, Karrach 2020]: 

                                   (5) 

where: FN (False Negative) is the classification error 
characterizing the number of objects erroneously not detected 
by the classifier. 
4. Average Precision is a metric that calculates the average 
value of the precision for the Recall metric in the range from 0 
to 1 [Pham 2020, Zheng 2020] and can be calculated as: 

                                    (6) 

where P(r) is the dependence function of Precision on Recall 
(completeness). 
5. Mean Average Precision (average AP) is a metric that 
characterizes the average AP for each class [Wang 2019, Li 
2020]: 

                                   (7) 

6. F1 score is a metric characterizing the average harmonic 
value between Precision and Recall [Chicco 2020]: 

                                     (8) 

The above metric can be used for qualitative assessment of the 
effectiveness of detection made by NN algorithm. However, 
solving the proposed problem requires not only high-quality 
detection and classification procedures, but also their 
operational implementation. This is due to the fact that the 
period of NN processing of video footage captured during one 
UAV flight should not exceed the total time (tDur), taking into 
account the shooting, transmission of video data to the server 
and replacement of the battery for the next stage of UAV flight. 
Thus, one may evaluate the effectiveness of NN models taking 
into account the duration of NN processing (ti) and the quality 
of the obtained results (evaluated using the Fi metric) by using 
equation: 

                           (9) 

where Si is the rating score of i-th model.  
The duration of video file for model testing is 1800 seconds and 
has frame rate 25 fps and resolution 1080p. This duration is 
determined by the technical characteristics of the DJI Phantom 
4 RTK UAV, which determine the autonomy of its operation. 
Testing was carried out on a hardware platform based on the 
NVIDIA GeForce RTX2080 GPU, Intel Core i5-8400 CPU, 16Gb 
RAM. Measuring the average total time spent on operations, 
including flying the DJI Phantom 4 UAV, copying the video file, 
replacing the battery, loading the next stage of the flight task, 
and performing operating procedures from the UAV, showed 
that tDur is about 3600 seconds. Thus, we consider NN models 
that process a test video file longer than this time to be 
unacceptable. 
When comparing different NN models, it is necessary to adhere 
to the same training conditions. This was done by ensuring the 
best quality of training of various NN training models using the 
same dataset and computing device. After passing through all 
training epochs, the version of the model that demonstrates 
the best training quality parameters was selected. 
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2.4 Object tracking 

To assess the vineyard-scale physiological condition, it is not 
enough to implement the Object Detection procedure. This is 
due to the fact that the detection of the same leaves will be 
carried out on several frames of the video sequence and will 
depend on external environmental factors and the UAV flight 
mode. Thus, the count of diseased leaves will not be correct. To 
solve this problem and, consequently, to improve the quality of 
monitoring, an object tracking method should be additionally 
applied (Object Tracking) [Dhillon 2020, Kapania 2020]. The 
integrated use of Object Detection and Object Tracking 
technologies allows to ignore already detected objects, which 
significantly reduces the number of repeated and false 
positives. 
The Object Tracking technology is based on SORT (Simple 
Online and Realtime Tracking) or Deep SORT algorithms, which 
are used to track detected objects [Bozek 2020]. As part of the 
study, the Deep SORT algorithm is used, since it allows you to 
identify previously detected objects even after they have been 
lost from the frame for a long time. This feature of the Deep 
SORT algorithm is achieved through the use of two 
mathematical methods - the Mahalanobis distance [64] and the 
Kalman filter (4) [64]. The Mahalanobis distance is used to 
determine the similarities between known and un-known 
weights of objects detected by the NN. Kalman filter is often 
used to eliminate noise and emissions in previously defined 
weighting factors. 

              (10) 

where d(p, q) is the distance between points p and q. 

                (11) 

where L is the distance from a certain object to the one 
calculated by the Kalman filter; λ is the regularization 
coefficient; Dk is the Mahalanobis distance; Da is the distance by 
external similarity. 

2.5 Dataset creation 

In order to solve the problem, it is advisable to use photos of 
grape leaves as initial data when forming a dataset. The labeled 
dataset allows to train NN in order to recognize and classify 
objects of interest within images with prefixed values. In light 
of the automated monitoring, it is recommended to use UAV 
video recording, it is also advisable to use storyboarded video 
materials of flying around the vineyard rows as a data set for 
training a NN. At the same time, practice of video filming has 
shown that when creating a dataset, it is necessary to take into 
account features associated with the actual operation of the 
UAV: 
1. When flying in rows, it is necessary that video recording of 
grape plants should be carried out by an unmanned aerial 
vehicle camera at a distance of one to two meters at a camera 
installation angle of 90° to 105° in the horizontal plane. 
2. When flying an unmanned aerial vehicle directly over a row, 
video recording of grape plants should be carried out at a 
height of no more than three meters at an angle of 90° to 100° 
in the vertical plane. 
3. When recording video, the automatic exposure function 
must be turned off in the UAV camera. This procedure is 
necessary to preserve the details in the light and dark areas of 
the image under different lighting conditions. Video recording 
of grape plants should be carried out on a clear day with a wind 
speed of no more than 4 m/s. 

Training NN on the generated dataset requires its preliminary 
preparation, called markup, or image annotation. This process 
allows to attach metadata to each dataset image that carries 
information about the properties of objects (class names, 
object location on the image, etc.). The main complexity of this 
procedure is inevitable manual marking of all objects in the 
images. An expert need to highlight the objects of interest on 
image. The correctness of object recognition by the NN will 
significantly depend on the quality of the annotation. In view of 
this, it is necessary to fully select all objects of interest on the 
photo. If necessary, objects are periodically omitted or 
incorrectly selected, the NN will not be able to identify all the 
patterns required or will identify them incorrectly. During pro-
cessing, the NN will independently find patterns in the intensity 
of pixel color channels, their alternation, etc. 
Labeling (annotation) of images of grape leaves was carried out 
using the LabelImg tool (https://github.com/tzutalin/labelImg). 
The YOLOv7 NN was trained in the Python environment using 
the PyTorch 1.13.1 framework and the OpenCV 4.7.0.72 
computer vision library. The following parameters were used to 
train the NN model: number of epochs was 150, batch-size was 
7, input image size 640×640, optimizer - stochastic gradient 
descent (SGD). Training was performed using the CUDA 11.6 
hardware-software architecture of parallel computing and 
cuDNN 8.9.1 library for training NN. 

2.6 Test Bench 

To test the technology in the vineyard, a DJI Phantom 4 
quadcopter UAV was used. This UAV has an average flight 
duration of 30 minutes. It is equipped with a video camera 
mounted on a gyrostabilized suspension. Camera specifications: 
sensor – 1/2.3’’ CMOS, 12.4 × 106 effective pixels; lens - FOV 
94° 20 mm (35 mm format equivalent) f/2.8. In the experiment, 
the video recording mode (FHD 1920 × 1080, 24 fps) was used. 
The test bench was equipped with a high-performance 
computing device based on the NVIDIA GeForce RTX2080 GPU, 
Intel Core i5-8400 CPU, 16Gb RAM has been used. To 
implement an interactive map, a developed GPS tracker was 
attached to the UAV. The block diagram of the GPS tracker is 
shown in Fig. 3. 

 
Figure 3. Structural diagram of a GPS tracker 

ESP8266 is used as the main microcontroller. To obtain 
geospatial information, the measuring module has a GPS 
receiver based on the NEO-6M-0-001 chip based on the Ublox 
NEO-6M STM chip. This module is a stand-alone GPS device 
with a high-performance u-blox 6 positioning processor. To 
communicate with the microcon-troller, a UART (TTL) interface 
is used with a supported baud rate from 4800 to 230400 baud, 
9600 baud by default. The log with geotags is recorded on a 
microSD memory card. For this, a specialized microSD card 
module is used, which is connected to the microcontroller via 
the SPI interface. 

3 RESULTS  

This section may be divided by subheadings. It should provide a 
concise and precise description of the experimental results, 
their interpretation, as well as the experimental conclusions 
that can be drawn. 

https://github.com/tzutalin/labelImg
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3.1 Dataset 

Up to 6320 photos of grape leaves (including healthy and 
diseased ones) were used to form training, test and validation 
datasets in proportion of 75%, 20% and 5% correspondingly. 
Examples of photos from the training dataset are shown in 
Fig. 4. 

 
Figure 4. Photos from the training sample 

3.2 Variant analysis 

The results of the variant analysis are presented in Table 1. 
They showed that the YOLOv7 algorithm is the most optimal for 
the detection and classification of diseased grape leaves. 

Table 1. Results of Variant Analysis of NN Models 

Model name 
mAP  

% 

P  

% 

R  

% 

F1  

% 

t  

s 
S 

YOLOv7 96 95 99 97 3330 97 

EfficientDet -D2 86 88 89 89 3150 89 

EfficientDet -D1 86 73 89 80 2250 80 

YOLOv5 85 72 87 79 3555 79 

MobileNetv2_140 91 55 91 69 1980 69 

EfficientDet -D0 87 53 88 66 2025 66 

EfficientDet -D7 94 99 96 97 16065 0 

ConvNeXT_basw_in22k 90 73 92 82 15030 0 

RegNety_008 95 62 98 76 6525 0 

ResNetv2 152x2 bitm 

in21k 
93 61 91 73 4770 0 

ViT_large_r50_s32_224 82 67 81 73 16200 0 

YOLOv3 97 57 95 71 4950 0 

DenseNet-161 80 60 83 70 7110 0 

BAT_ResNext26ts 84 58 87 70 7650 0 

Gluon_Xception65 85 55 83 66 11250 0 

SPNASNet_100 79 53 82 65 5400 0 

3.3 NN Training 

Fig. 5 shows charts illustrating the training quality of the NN 
model depending on epochs. In this experiment of training 
diseased grape leaves using the YOLOv7, the mAP_curve, 
PR_curve, P_curve, R_curve etc. metrics were used during the 
model training process. It is noticeable that the metrics 
describing the average value of mAP go into saturation. It 
indicates that the NN has successfully trained on the prepared 
dataset. 

 

 

      

 

 
Figure 5. Сharts of metrics dependence on NN training epochs 

3.4 Detection results using heatmap 

The next step after the successful training and testing of the NN 
was practical use for the detection and classification of 
diseased grape leaves. The trained and tested NN was already 
capable for detecting typical diseases of the vineyard (Fig. 6), 
however, for greater clarity and ease of interpretation of the 
results, we decided to create an inter-active map of the 
vineyard. 
An interactive map allows one to display the detection results 
in the form of points on the map (geotags) with a photo and a 
number of detected disease foci, which may help the vineyard 
staff to locate the problem area. Also, displaying a photo with a 
detected problem will allow one to eliminate possible false 
positives at an early-stage triggering. If necessary, the final file 
with geotags can be loaded into the navigator to plot the route 
to the problem area. 
In the process of implementing the procedure for NN 
processing of video materials, a log is formed containing the 
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frame time and the number of diseased leaves detected by the 
NN. Visualization of vineyard-scale physiological condition is 
made in the form of a heat map (Fig. 7), the input data for 
which are synchronized logs of NN processing and a GPS tracker 
(with combined timestamps). 

 

 

 

 
Figure 6. Results of detection of diseased grape leaves 

The interactive map allows service personnel to quickly obtain 
information about physiological condition not only in static, but 
also in dynamic mode. The presence of problem areas in the 
studied part of the vineyard is visualized by means of different 
colors of markers in accordance with the number of detected 
diseased leaves. The red areas on the interactive map indicate 
that the NN algorithm determined the proportion of diseased 
leaves to be more than 10%. 
The heatmap on Fig. 7 was derived after launching the flight 
mission of UAV-based monitoring reinforced by CNN for the 
vineyard of the JSC "Agrofirma Chernmrets" (Crimea) in June 
and July, 2023, respectively (A and B). Calculations showed that 
when using computing equipment based on the RTX2080 GPU 
and the DJI Phantom 4 UAV, the effective monitored vineyard 
area per day is 2.5 hectares. 

 

A 

 

B 

Figure 7. Interactive heatmap of the vineyard-scale physiological 

condition obtained with a time interval of one month A – in June 2023; 
B – in July 2023 

4 DISCUSSION  

The study demonstrates how UAVs enhanced with CNN can be 
used to monitor the physiological condition of vineyards. The 
proposed approach builds on existing technologies that 
diagnose grapevine diseases from leaf images using CNNs [Li 
2020, Peng 2021, Fraiwan 2022, Kaur 2022, Lin 2022b]. Most 
existing methods for detecting grape diseases using CNNs focus 
on analyzing images of individual leaves without the use of 
automated imaging techniques [Orchi 2021, Lin 2022b, Pandian 
2022, Huang 2023, Sharma 2023]. In other words, the initial 
data for disease classification are presented as images of 
individual grape leaves. The limitations of the proposed 
methods restrict the possibility of effective monitoring of entire 
vineyards. Additionally, to implement these methods, mainly 
lightweight CNN models (MobileNet, ShuffleNet, YOLO-tiny, 
etc.) are utilized. The use of lightweight versions of CNN models 
is necessitated by the performance limitations of mobile 
computing devices. To overcome the constraints of the 
aforementioned methods, a new approach is required [Kuric 
2011]. It must efficiently detect and count leaves captured 
under different conditions and minimize the chance of re-
counting previously detected leaves. The solution to these 
challenges necessitates much more computationally intensive 
processes. In the present study we demonstrated a new 
technique and methods based on data collection and 
processing procedures to be performed on separate hardware 
devices (UAV and PC). This approach enables the utilization of 
stationary GPU-based computing devices to perform intensive 
computations. 
Competitive distinction of the proposed approach is that it can 
evaluate not only individual leaves, but the whole vineyard. 
This approach is less accurate in determining the disease of 
specific vines, because the resolution of individual leaves on the 
analyzed image is lower, and not all leaves are in the frame, so 
some diseased leaves may be missed. However, this approach 
allows tracking the disease spread dynamics and detecting 
disease outbreaks early. 
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Additionally, several key findings can be highlighted from this 
work. First, the YOLOv7 model was shown to provide a good 
balance of accuracy and computational efficiency for grape leaf 
detection, with over 90% mAP. This indicates that state-of-the-
art deep learning methods can successfully detect foliage under 
variable field conditions. Second, the use of the Deep SORT 
algorithm for object tracking significantly reduced false 
positives by avoiding re-counting of leaves in overlapping 
frames. This step is critical for getting an accurate assessment 
of vineyard health over time.  
The interactive heatmap visualization tool provides a user-
friendly format to view results and identify problem areas that 
require attention. The capability to monitor a vineyard status 
dynamically over a growing season enables growers to respond 
promptly to biotic and abiotic stresses. In terms of scalability, 
the study found that a single UAV-computer setup could 
effectively survey 2.5 hectares per day. This paves the way for 
adoption by small to mid-sized vineyards. 
Some limitations should be noted. The image dataset, while 
substantial at over 6000 images, was collected from a single 
vineyard. Expanding the diversity of grape varietals and 
diseases would help improve model robustness. Data 
augmentation techniques could also be utilized to increase the 
number and variability of training images. In addition, 
optimizing flight patterns and image acquisition parameters 
could potentially increase the survey area covered per UAV 
sortie. 

5 CONCLUSIONS 

The developed technology of automated vineyard physiological 
condition monitoring based on UAV and object detection 
algorithm YOLOv7 aimed to ensure high yields of high-quality 
table and technical grapes by minimizing and optimizing human 
labor. As an indicator of the physiological state, images of grape 
leaves obtained with the help of UAVs were used. For 
automated classification of leaves, it is proposed to use deep 
learning CNN. The results of testing the precision detection of 
diseased leaves by a trained NN showed that the mAP value is 
less than 91%, which is sufficient to identify problem areas. 
Visualization of the vineyard-scale physiological condition is 
made in the form of a heatmap. The proposed technology 
makes it possible to use stationary GPU-based computing 
devices to perform resource-intensive calculations and shows 
rather good results in diseased leaves detection even in hard 
shooting conditions: variable lighting, complex background, 
partial overlap of leaves. The integrated use of Object 
Detection and Object Tracking technologies allows to ignore 
already detected objects, which significantly reduces the 
number of repeated and false positives. 
Overall, this work demonstrates proof-of-concept for an 
intelligent UAV-enabled system to monitor vineyard health. The 
capacity to detect foliar abnormalities in a rapid, 
comprehensive and automated manner would be a valuable 
precision viticulture tool.  
Future research could explore incorporating multispectral or 
thermal imagery to complement visual disease detection. The 
system could also be extended to estimate additional 
physiological parameters, such as crop yield. This study 
provides a foundation to build upon with deep learning and 
robotics technologies in agriculture [Hortobagyi 2021]. 
Implementation of the technology into the production process 
of agro-industrial enterprises will effectively detect and 
promptly eliminate diseases in the early stages, which will 
positively affect the yield of products, as well as reduce the 
possible financial risks of the enterprise. Also, the proposed 

solution is the basis for creating a decision support system to 
protect grapes from diseases and assessing biotic risks in 
vineyards. Monitoring biotic risks will allow winegrowers to 
prevent the spread of pests and diseases, thereby improving 
the sustainability and resilience of vineyards. 
There are many areas where mechatronic assistants and 
artificial intelligence techniques can be used. These are 
industrial areas and engineering designs, but also in the area of 
common products such as household items, medical devices, 
work tools, equipment for sports and other areas [Ostertag 
2014, Virgala 2014, Pivarciova 2016, Qazizada 2016, Wojke 
2017, Saga 2019, Bozek 2020, Kelemen 2021, Kelemenova 
2021a,b, Kuric 2021 & 2022, Li 2021, Suder 2021, Zelnik 2021, 
Lestach 2022, Mikova 2022, Ruzarovsky 2022, Vagas 2022 & 
2024, Bratan 2023, Sharma 2023, Romancik 2024]. 
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