SUPERHYDROPHOBIC STAINLESS STEEL SURFACE BY TWO-STEP NS LASER PROCESSING

Abstract

Growing demand for superhydrophobic surfaces in recent years is associated to many attractive science and engineering applications including self-cleaning, anti-icing and anti-corrosive behaviours. Stainless steel type AISI 316L is one of the most versatile and widely used engineering material in industries. Inspired by the “lotus effect” nano/microstructures has been fabricated by direct laser writing method with nanosecond laser source using two ablation regimes. Primarily, microstructures were fabricated with a tightly focused beam and covered by nano-scale structures by defocused laser beam in the second fabrication step. However, freshly prepared laser patterned metal surface shows hydrophilic behaviour. The hydrophilic to superhydrophobic transformation takes several days or weeks by aging technique in atmospheric condition. In this study, the transition time has been drastically reduced by high vacuum processing technique. Wetting properties with respect to laser processing parameters and surface morphology were examined and found to be consistent for large droplet volumes.

Recommended articles

PLUNGER PRESSING SPEED LIKE THE MAIN FACTOR INFLUENCING OF THE MECHANICAL PROPERTIES OF DIE CASTING

Stefan Gaspar, Jan Pasko
Keywords: die casting | plunger pressing speed | mechanical properties

DESIGN OF CNC MILLING MACHINE AS A BASE OF INDUSTRY 4.0 ENTERPRISE

Petr Keller, Martin Sevic
Keywords: CNC milling machine | smart factory | industry 4.0 | GRBL | Arduino