AZURE KINECT BODY TRACKING UNDER REVIEW FOR THE SPECIFIC CASE OF UPPER LIMB EXERCISES

Abstract

A tool for human pose estimation and quantification using consumer-level equipment is a long-pursued objective. Many studies have employed the Microsoft Kinect v2 depth camera but with recent release of the new Kinect Azure a revision is required. This work researches the specific case of estimating the range of motion in five upper limb exercises using four different pose estimation methods. These exercises were recorded with the Kinect Azure camera and assessed with the OptiTrack motion tracking system as baseline. The statistical analysis consisted of evaluation of intra-rater reliability with intra-class correlation, the Pearson correlation coefficient and Bland–Altman statistical procedure. The modified version of the OpenPose algorithm with the post-processing algorithm PoseFix had excellent reliability with most intra-class correlations being over 0.75. The Azure body tracking algorithm had intermediate results. The results obtained justify clinicians employing these methods, as quick and low-cost simple tools, to assess upper limb angles.

Recommended articles

DEVELOPMENT OF A PARALLEL GRIPPER WITH AN EXTENSION NAIL MECHANISM USING A METAL BELT

NOBUTO MATSUHIRA, JUNYA TANAKA
Keywords: Robotic hand | hardware design | manufacturing robot | nail extension mechanism | parallel gripper

INFLUENCE OF THE PRESSURE DIE GEOMETRY ON THE BENT TUBE OVALITY

MICHAELA CISAROVA, JAN RIHACEK, KAMIL PODANY, EVA PETERKOVA
Keywords: finite element analysis | numerical simulation | ANSYS | 34MnB5 steel | tube bending